• Title/Summary/Keyword: discrete variables

Search Result 399, Processing Time 0.027 seconds

Using Artificial Neural Networks for Forecasting Algae Counts in a Surface Water System

  • Coppola, Emery A. Jr.;Jacinto, Adorable B.;Atherholt, Tom;Poulton, Mary;Pasquarello, Linda;Szidarvoszky, Ferenc;Lohbauer, Scott
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Algal blooms in potable water supplies are becoming an increasingly prevalent and serious water quality problem around the world. In addition to precipitating taste and odor problems, blooms damage the environment, and some classes like cyanobacteria (blue-green algae) release toxins that can threaten human health, even causing death. There is a recognized need in the water industry for models that can accurately forecast in real-time algal bloom events for planning and mitigation purposes. In this study, using data for an interconnected system of rivers and reservoirs operated by a New Jersey water utility, various ANN models, including both discrete prediction and classification models, were developed and tested for forecasting counts of three different algal classes for one-week and two-weeks ahead periods. Predictor model inputs included physical, meteorological, chemical, and biological variables, and two different temporal schemes for processing inputs relative to the prediction event were used. Despite relatively limited historical data, the discrete prediction ANN models generally performed well during validation, achieving relatively high correlation coefficients, and often predicting the formation and dissipation of high algae count periods. The ANN classification models also performed well, with average classification percentages averaging 94 percent accuracy. Despite relatively limited data events, this study demonstrates that with adequate data collection, both in terms of the number of historical events and availability of important predictor variables, ANNs can provide accurate real-time forecasts of algal population counts, as well as foster increased understanding of important cause and effect relationships, which can be used to both improve monitoring programs and forecasting efforts.

Estimating Effects of Attributes on Pizza Restaurant Choice by University Students (대학생들의 피자 전문점 선택에 영향을 미치는 속성에 대한 평가)

  • Kang Jong-Heon;Jeong In-Suk
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.16 no.1
    • /
    • pp.29-36
    • /
    • 2006
  • The purpose of this study was to measure the pizza purchasing behavioral characteristics of respondents and importances of factors affecting pizza purchase, to estimate the effects of attributes on pizza restaurant choice, and to predict probability of selecting a particular pizza restaurant The questionnaire consisted of two parts: The paired experimental profiles, purchasing behavior and importances of factors affecting pizza purchase. This study generated profiles of 16 hypothetical pizza restaurant based on the seven attributes. The profiles comprised 16 discrete sets of variables, each of which had two levels. For this study, researcher randomly selected 150 students of university as respondents. Twenty students did not complete the survey instrument, resulting in a final sample size of 129. All estimations were carried out using frequency, correlation, phreg procedure of SAS package. The results were as followed Based on the estimated model, the -2LL(B) statistic for a model with all explanatory variables was 5585.761 and the Chi-square statistic is 134.786 with 7 df (p<0.001). At p<0.001, we would reject the null hypothesis that the attributes do not influence choice. The parameter estimate for price was highest, followed by late delivery time, promised delivery time, money-back guarantee, discount, pizza variety, and pizza temperature. The result from this study suggested that there was an opportunity to increase market share and profit by improving operations so that customers receive discount and money-back guarantee simultaneously, and by reducing price, delivery time.

  • PDF

Effects of Design Parameters of Mixer Blades on Particle Mixing Performance (혼합기 블레이드 설계변수에 따른 입자의 혼합성능 연구)

  • Hwang, Seon-Pil;Park, Sanghyun;Sohn, Dongwoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.363-370
    • /
    • 2017
  • This paper is concerned with the evaluation of mixing performance of a particle mixer, which consists of a vertical cylindrical vessel and a rotating impeller with several blades. We consider four design variables for the mixer blades, such as the angle, length, and number of blades, and the gap between the blades and the vessel bottom. The particle mixing process due to the impeller rotation is simulated using the discrete element method, and the mixing performance is quantitatively evaluated by introducing a mixing index. Analyzing the main effects and interactions of the four design variables through the design-of-experiments approach, it is concluded that the blade angle has the most dominant influence on the mixing performance whereas the gap has no significant influence. In addition, we determine the best combination of design parameters to maximize the mixing performance.

A Methodology for Creating a Simulation Model for a Agent Based and Object-oriented Logistics Support System (군수지원시스템을 위한 에이전트 기반의 객체 지향 시뮬레이션 모델 아키텍처 설계 방법론)

  • Chung, Yong-H.;Hwam, Won-K.;Park, Sang-C.
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.1
    • /
    • pp.27-34
    • /
    • 2012
  • Proposed in the paper is an agent based and object-oriented methodology to create a virtual logistics support system model. The proposed virtual logistics support system model consists of three types of objects: the logistics force agent model(static model), the military supplies transport manager model(function model), the military supplies state manager model(dynamic model). A logistic force agent model consists of two agent: main function agent and function agent. To improve the reusability and composability of a logistics force agent model, the function agent is designed to adapt to different logistics force agent configuration. A military supplies transport manager is agent that get information about supply route, make decisions based on decision variables, which are maintained by the military supplies state manager, and transport military supplies. A military supplies state manager is requested military supplies from logistics force agent, provide decision variables such as the capacity, order of priority. For the implementation of the proposed virtual logistics force agent model, this paper employs Discrete Event Systems Specification(DEVS) formalism.

A Study on the Socio-economic Characteristics of the Angler Population and the Estimation of A Fishing Frequency Function (유어낚시인구의 사회경제학적 특성과 출조빈도함수의 추정에 관한 연구)

  • Park Cheol-Hyung
    • The Journal of Fisheries Business Administration
    • /
    • v.36 no.1 s.67
    • /
    • pp.81-101
    • /
    • 2005
  • This article is to estimate the fishing frequency function in Korean recreational fishery with respect to socio-economic characteristics of anglers. First, the study described the characteristics of the entire angler population on the view points of 9 socio-economic variables. And then, the study divided the total angler population into three groups of in-land, sea, and mixed angler populations in order to investigate the differences in their characteristics. The study could confirm the existence of differences in regions, size of regions, and educational levels between the in - land and the sea angler populations by testing heterogeneity in the frequency table. The fishing frequency function is estimated using Poisson regression model in order to accomodate the count data(non-negative discrete random variable) aspects of the fishing frequency. However, the model specification error is found due to overdispersion of data. The model exhibits the lack of goodness of fit. The negative binomial regression model is adopted to cure the overdispersion of the data as an alternative estimation methodology. Finally, the study can confirm overdispersion does not exist in the model any more and the goodness of fit improved significantly to the reasonable level. The results of estimation of fishing frequency population modeled by the negative binomial regression models are following. The three variables of region, sex, and education have effects on the decision making process of fishing frequency in the case of in-land recreation fishery. On the other hand, the three variables of sex, age, and marriage status do the same job in the case of sea angler population. Among the left-over variables, both income and use of Internet variables now affect on the process in mixed angler population. Finally, the results of whole angler population show that all of the previous variables are proven to be statistically significant due to the summation of data with all three sub-groups of angler population.

  • PDF

Case Study on the 6th Graders' Understanding of Concepts of Variable (초등학교 6학년 학생들의 변수 개념 이해에 관한 사례 연구)

  • Ha, Su-Hyun;Lee, Gwang-Ho
    • The Mathematical Education
    • /
    • v.50 no.2
    • /
    • pp.213-231
    • /
    • 2011
  • The purpose of this study is to analyze the 6th graders' understanding of the concepts of variable on various aspects of school algebra. For this purpose, the test of concepts of variable targeting a sixth-grade class was conducted and then two students were selected for in-depth interview. The level of mathematics achievement of the two students was not significantly different but there were differences between them in terms of understanding about the concepts of variable. The results obtained in this study are as follows: First, the students had little basic understanding of the variables and they had many cognitive difficulties with respect to the variables. Second, the students were familiar with only the symbol '${\Box}$' not the other letters nor symbols. Third, students comprehended the variable as generalizers imperfectly. Fourth, the students' skill of operations between letters was below expectations and there was the student who omitted the mathematical sign in letter expressions including the mathematical sign such as x+3. Fifth, the students lacked the ability to reason the patterns inductively and symbolize them using variables. Sixth, in connection with the variables in functional relationships, the students were more familiar with the potential and discrete variation than practical and continuous variation. On the basis of the results, this study gives several implications related to the early algebra education, especially the teaching methods of variables.

Solving design optimization problems via hunting search algorithm with Levy flights

  • Dogan, Erkan
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.351-368
    • /
    • 2014
  • This study presents a hunting search based optimum design algorithm for engineering optimization problems. Hunting search algorithm is an optimum design method inspired by group hunting of animals such as wolves, lions, and dolphins. Each of these hunters employs hunting in a different way. However, they are common in that all of them search for a prey in a group. Hunters encircle the prey and the ring of siege is tightened gradually until it is caught. Hunting search algorithm is employed for the automation of optimum design process, during which the design variables are selected for the minimum objective function value controlled by the design restrictions. Three different examples, namely welded beam, cellular beam and moment resisting steel frame are selected as numerical design problems and solved for the optimum solution. Each example differs in the following ways: Unlike welded beam design problem having continuous design variables, steel frame and cellular beam design problems include discrete design variables. Moreover, while the cellular beam is designed under the provisions of BS 5960, LRFD-AISC (Load and Resistant Factor Design-American Institute of Steel Construction) is considered for the formulation of moment resisting steel frame. Levy Flights is adapted to the simple hunting search algorithm for better search. For comparison, same design examples are also solved by using some other well-known search methods in the literature. Results reveal that hunting search shows good performance in finding optimum solutions for each design problem.

Design of fuzzy digital PI+D controller using simplified indirect inference method (간편 간접추론방법을 이용한 퍼지 디지털 PI+D 제어기의 설계)

  • Chai, Chang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.35-41
    • /
    • 2000
  • This paper describes the design of fuzzy digital PID controller using a simplified indirect inference method. First, the fuzzy digital PID controller is derived from the conventional continuous-time linear digital PID controller,. Then the fuzzification, control-rule base, and defuzzification using SIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete-time fuzzy version of the conventional PID controller, which has the same linear structure, but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability, particularly when the process to be controlled is nonlinear. When the SIIM is applied the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated that the proposed method provides better control performance than the one proposed by D. Misir et al.

  • PDF

Optimum design of steel framed structures including determination of the best position of columns

  • Torkzadeh, P.;Salajegheh, J.;Salajegheh, E.
    • Steel and Composite Structures
    • /
    • v.8 no.5
    • /
    • pp.343-359
    • /
    • 2008
  • In the present study, an efficient method for the optimum design of three-dimensional (3D) steel framed structures is proposed. In this method, in addition to choosing the best position of columns based on architectural requirements, the optimum cross-sectional dimensions of elements are determined. The preliminary design variables are considered as the number of columns in structural plan, which are determined by a direct optimization method suitable for discrete variables, without requiring the evaluation of derivatives. After forming the geometry of structure, the main variables of the cross-sectional dimensions are evaluated, which satisfy the design constraints and also achieve the least-weight of the structure. To reduce the number of finite element analyses and the overall computational time, a new third order approximate function is introduced which employs only the diagonal elements of the higher order derivatives matrices. This function produces a high quality approximation and also, a robust optimization process. The main feature of the proposed techniques that the higher order derivatives are established by the first order exact derivatives. Several examples are solved and efficiency of the new approximation method and also, the proposed method for the best position of columns in 3D steel framed structures is discussed.

Contour Control of X-Y Tables Using Nonlinear Fuzzy PD Controller (비선형 퍼지 PD 제어기를 이용한 X-Y 테이블의 경로제어)

  • Chai, Chang-Hyun;Suk, Hong-Seong;Kim, Hee-Nyon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2849-2852
    • /
    • 1999
  • This paper describes the fuzzy PD controller using simplified indirect inference method. First, the fuzzy PD controller is derived from the conventional continuous time linear PD controller. Then the fuzzification, control-rule base, and defuzzification using SIIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional PD controller. which has the same linear structure. but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability. particularly when the process to be controlled is nonlinear. As the SIIM is applied, the fuzzy Inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the Proposed method has the capability of the high speed inference and extending the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control Performance of the one Proposed by D. Misir et at. Final)y. we simulated the contour control of the X-Y tables with direct control strategies using the proposed fuzzy PD controller.

  • PDF