• 제목/요약/키워드: discrete time model

검색결과 825건 처리시간 0.029초

T-S 퍼지모델을 이용한 이산 시간 비선형계통의 상태 궤환 선형화 (State Feedback Linearization of Discrete-Time Nonlinear Systems via T-S Fuzzy Model)

  • 김태규;왕법광;박승규;윤태성;안호균;곽군평
    • 한국지능시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.865-871
    • /
    • 2009
  • 본 논문은 이산 시간 비선형 시스템을 이산 시간 T-S 퍼지 모델에 의해 표현되는 새로운 궤환 선형화에 대해서 논한다. T-S fuzzy 모델의 국부적인 선형 모델들은 각각 가제어 표준형으로 변환되어지고, 그것들의 T-S 퍼지 결합은 궤환 선형화 가능한 T-S fuzzy 모델이 된다. 이 모델을 토대로 비선형 상태 궤환 선형 입력이 결정된다. 비선형 상태 변환은 가제어 표준형에 대한 선형 상태 변환으로부터 추론된다. 본 논문에서 제안하는 방법은 충분한 수학적 배경이 요구되는 고전적인 궤환 선형화 기법과 비교하여 수학적으로 보다 직관적이고 이해하기 쉽다. 본 논문의 궤환 선형화 조건은 고전적인 궤환 선형화와 비교하여 더 완화되었다. 이것은 고전적인 선형화방식 보다 더 큰 범주의 비선형 시스템이 선형화가 가능해진다는 것을 의미 한다.

경로기반 해법알고리즘을 이용한 동적통행배분모형의 개발 (A ROUTE-BASED SOLUTION ALGORITHM FOR DYNAMIC USER EQUILIBRIUM ASSIGNMENT)

  • Sangjin Han
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 2002년도 제41회 학술발표회논문집
    • /
    • pp.97-139
    • /
    • 2002
  • The aim of the present study is to find a good quality user equilibrium assignments under time varying condition. For this purpose, this study introduces a dynamic network loading method that can maintain correct flow propagation as well as flow conservation, and it develops a novel solution algorithm that does not need evaluation of the objective function by modifying the Schittenhelm (1990)'s algorithm. This novel algorithm turns out to be efficient and convenient compared to the conventional Frank-Wolfe (1956) algorithm because the former finds solutions based on routes rather than links so that it can maintain correct flow propagation intrinsically in the time-varying network conditions. The application of dynamic user equilibrium (DUE) assignment model with this novel solution algorithm to test networks including medium-sized one shows that the present DUE assignment model gives rise to high quality discrete time solutions when we adopt the deterministic queuing model for a link performance function, and we associate flows and costs in a proper way.

  • PDF

온톨로지를 이용한 이산 사건 시뮬레이션의 개념적 모델 구축 지원에 관한 연구 (Ontology-based Conceptual Model Building Framework for Discrete Event Simulation)

  • 박지성;정성환;손미애
    • 한국CDE학회논문집
    • /
    • 제19권1호
    • /
    • pp.29-40
    • /
    • 2014
  • Conceptual Modeling is the process of abstracting a model from a real or proposed system. It is probably the most important aspect of a simulation study. Relate works show that the elementary developers devoted little time to understanding how the systems actually worked, namely they didn't build appropriate conceptual model. Thus, the result of simulation is inconsistent because it depends on developer's competence. Although many researchers suggested various techniques enabling developer to build conceptual model, there were several limitations. In this study, to overcome the limitations of existing techniques, we proposed COMBINE-DES (COnceptual Model BuildINg framEwork using ontology for Discrete Event Simulation). The COM-BINE-DES supports expediting the conceptual modeling with Solution ontology generated by Domain ontology and Simulation ontology. Moreover, it provides consistent simulation result regardless of repeated modeling.

SYNTHESIS OF DISCRETE TIME FLIGHT CONTROL SYSTEM USING NONLINEAR MODEL MATCHING

  • Aoi, Kazunari;Osa, Yasuhiro;Uchikado, Shigeru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.460-460
    • /
    • 2000
  • Until now various model matching systems have been proposed for linear system, but very little has been done for nonlinear system In this paper, a design method of discrete time flight control system using nonlinear model matching is proposed. This method is based on Hirschorn's algorithm and facilitates easy determination of the control law using the relationship, between the output and the input, which is obtained by the time shift of the output. Also as a result, this method is the extension of the linear model matching control system proposed by Wolovich, in which the control law is obtained by left-multiplying the output by the interactor matrix. At the end of paper, the proposed control system is applied to CCV flight control system of an aircraft and the feasibility of the proposed approach is shown by the numerical simulations.

  • PDF

An optimal discrete-time feedforward compensator for real-time hybrid simulation

  • Hayati, Saeid;Song, Wei
    • Smart Structures and Systems
    • /
    • 제20권4호
    • /
    • pp.483-498
    • /
    • 2017
  • Real-Time Hybrid Simulation (RTHS) is a powerful and cost-effective dynamic experimental technique. To implement a stable and accurate RTHS, time delay present in the experiment loop needs to be compensated. This delay is mostly introduced by servo-hydraulic actuator dynamics and can be reduced by applying appropriate compensators. Existing compensators have demonstrated effective performance in achieving good tracking performance. Most of them have been focused on their application in cases where the structure under investigation is subjected to inputs with relatively low frequency bandwidth such as earthquake excitations. To advance RTHS as an attractive technique for other engineering applications with broader excitation frequency, a discrete-time feedforward compensator is developed herein via various optimization techniques to enhance the performance of RTHS. The proposed compensator is unique as a discrete-time, model-based feedforward compensator. The feedforward control is chosen because it can substantially improve the reference tracking performance and speed when the plant dynamics is well-understood and modeled. The discrete-time formulation enables the use of inherently stable digital filters for compensator development, and avoids the error induced by continuous-time to discrete-time conversion during the compensator implementation in digital computer. This paper discusses the technical challenges in designing a discrete-time compensator, and proposes several optimal solutions to resolve these challenges. The effectiveness of compensators obtained via these optimal solutions is demonstrated through both numerical and experimental studies. Then, the proposed compensators have been successfully applied to RTHS tests. By comparing these results to results obtained using several existing feedforward compensators, the proposed compensator demonstrates superior performance in both time delay and Root-Mean-Square (RMS) error.

Time Domain Based Digital Controller for Buck-Boost Converter

  • Vijayalakshmi, S.;Sree Renga Raja, T.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1551-1561
    • /
    • 2014
  • Design, Simulation and experimental analysis of closed loop time domain based Discrete PWM buck-boost converter are described. To improve the transient response and dynamic stability of the proposed converter, Discrete PID controller is the most preferable one. Discrete controller does not require any precise analytical model of the system to be controlled. The control system of the converter is designed using digital PWM technique. The proposed controller improves the dynamic performance of the buck-boost converter by achieving a robust output voltage against load disturbances, input voltage variations and changes in circuit components. The converter is designed through simulation using MATLAB/Simulink and performance parameters are also measured. The discrete controller is implemented, and design goal is achieved and the same is verified against theoretical calculation using LabVIEW.

이산 시간을 고려한 시스템의 교체와 수리 비용 최적화 연구 (Optimal Periodic Replacement Policy Under Discrete Time Frame)

  • 이진표
    • 산업경영시스템학회지
    • /
    • 제43권1호
    • /
    • pp.61-69
    • /
    • 2020
  • Systems such as database and socal network systems have been broadly used, and their unexpected failure, with great losses and sometimes a social confusion, has received attention in recent years. Therefore, it is an important issue to find optimal maintenance plans for such kind of systems from the points of system reliability and maintaining cost. However, it is difficult to maintain a system during its working cycle, since stopping works might incur users some troubles. From the above viewpoint, this paper discusses minimal repair maintenance policy with periodic replacement, while considering the random working cycles. The random working cycle and periodic replacement policies with minimal repair has been discussed in traditional literatures by usually analyzing cases for the nonstopping works. However, maintenance can be more conveniently done at discrete time and even during the working cycle in real applications. So, we propose that periodic replacement is planned at discrete times while considering the random working cycle, and moreover provide a model in which system, with a minimal repair at failures between replacements, is replaced at the minimum of discrete times KT and random cycles Y. The average cost rate model is used to determine the optimal number of periodic replacement.

Application of Statistical Models for Default Probability of Loans in Mortgage Companies

  • Jung, Jin-Whan
    • Communications for Statistical Applications and Methods
    • /
    • 제7권2호
    • /
    • pp.605-616
    • /
    • 2000
  • Three primary interests frequently raised by mortgage companies are introduced and the corresponding statistical approaches for the default probability in mortgage companies are examined. Statistical models considered in this paper are time series, logistic regression, decision tree, neural network, and discrete time models. Usage of the models is illustrated using an artificially modified data set and the corresponding models are evaluated in appropriate manners.

  • PDF

칼만 필터를 사용한 레이더 펄스열 추적 (Tracking of Radar Pulse Train Using Kalman Filter)

  • 김용우;신욱현;이효섭;김홍필;양해원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.176-176
    • /
    • 2000
  • Generally, discrete-time processing is applied to the uniformly-sampled signals. But, radars emit pulse trains with irregular time instances. In this paper, we formulate the radar pulse train as a stochastic discrete-time dynamic linear model. The estimation task can be done via linear signal processing using Kalman Filter and some considerations. As a result, we can estimate the pulse repetition interval of a pulse train and predict the time instances of the next pulses to be received.

  • PDF

Dynamic Incidence Matrix Representation of Timed Petri Nets and Its Applications for Performance Analysis

  • Shon, J.G.;Hwang, C.S.;Baik, D.K.
    • 한국경영과학회지
    • /
    • 제16권2호
    • /
    • pp.128-147
    • /
    • 1991
  • We propose a dynamic incidence matrix (DIM) for reflecting states and time conditions of a timed Petri net (TPN) explicitly. Since a DIM consists of a conventional incidence matrix, two time-related vectors and two state-related vectors, we can get the advantages inherent in the conventional incidence matrix of describing a static structure of a system as well as another advantage of expressing time dependent state transitions. We introduce an algorithm providing the DIM with a state transition mechanism. Because the algorithm is, in fact, an algorithmic model for discrete event simulation of TPN models, we provide a theoretical basis of model transformation of a TPN model into a DEVS(Discrete Event system Specification) model. By executing the algorithm we can carry out performance analysis of computer communication protocols which are represented TPN models.

  • PDF