• Title/Summary/Keyword: discrete systems

Search Result 1,864, Processing Time 0.024 seconds

Vortex Tube Modeling Using the System Identification Method (시스템 식별 방법을 이용한 볼텍스 튜브 모델링)

  • Han, Jaeyoung;Jeong, Jiwoong;Yu, Sangseok;Im, Seokyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.5
    • /
    • pp.321-328
    • /
    • 2017
  • In this study, vortex tube system model is developed to predict the temperature of the hot and the cold sides. The vortex tube model is developed based on the system identification method, and the model utilized in this work to design the vortex tube is ARX type (Auto-Regressive with eXtra inputs). The derived polynomial model is validated against experimental data to verify the overall model accuracy. It is also shown that the derived model passes the stability test. It is confirmed that the derived model closely mimics the physical behavior of the vortex tube from both the static and dynamic numerical experiments by changing the angles of the low-temperature side throttle valve, clearly showing temperature separation. These results imply that the system identification based modeling can be a promising approach for the prediction of complex physical systems, including the vortex tube.

Improvement of Pedestrian Convenience and Mobility by Applying the Walking Guidance System in Subway Stations (지하철 역사내 동선 분리 시스템을 활용한 보행편의 및 이동성 증진)

  • Lee, Joo-Yong;Kim, Taewan;You, So-Young
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.2
    • /
    • pp.204-213
    • /
    • 2015
  • The congestion of pedestrians impedes the utilization efficiency of a subway station. Conflicts among pedestrians due to unseparated pedestrian flows not only increase the impedance of pedestrian mobility but also negatively affect on pedestrian safety. This paper analyzes the travel characteristics of bi-directional pedestrian flow based on microscopic movements, and evaluates the operation efficiency on separating the traffic line. The subway station was simulated in a 2-D grid structure by applying Discrete Element Method, and the movement is organized in each cell of the grid. As a result, the model explicates that separating the traffic line and encouraging the 'Keep right rule' would be mostly effective for the conflicting flows. Therefore, applying the 'Walking Guidance System' would be efficient to improve the pedestrian convenience and mobility.

Estimation of Channel Capacity for Data Traffic Transmission (데이터 트래픽 특성을 고려한 적정 채널 용량 산정)

  • Park, Hyun Min
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.3
    • /
    • pp.589-595
    • /
    • 2017
  • We present an estimation model for optimal channel capacity required to data traffic transmission. The optimal channel capacity should be calculated in order to satisfy the permitted transmission delay of each wireless data services. Considering the discrete-time operation of digital communication systems and batch arrival of packet-switched traffic for various wireless services, $Geo^x$/G/1 non-preemptive priority queueing model is analyzed. Based on the heuristic interpretation of the mean waiting time, the mean waiting times of various data packets which have the service priority. Using the mean waiting times of service classes, we propose the procedure of determining the optimal channel capacity to satisfy the quality of service requirement of the mean delay of wireless services. We look forward to applying our results to improvement in wireless data services and economic operation of the network facilities.

Towards the Application of Safety Integrity Level for Improving Process Safety (공정안전향상을 위한 Safety Integrity Level의 적용 방향)

  • Kwon, Hyuck-Myun;Park, Hee-Chul;Chun, Young-Woo;Park, Jin-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.64-69
    • /
    • 2012
  • The concept of SIL is applied in the most of all standards relating to functional system safety. However there are problems for the people to apply SIL to their plants. as these standards don't include sufficient informations. In this regards, this paper will suggest the direction of SIL application and concept based on IEC 61508 and IEC 61511. A Safety Integrity Level(SIL) is the discrete level(one out of possible fours), corresponding to a range of the probability of an E/E/PE (Electric/Electrical/Programmable Electrical) safety-related system satisfactorily performing the specific safety functions under all the stated conditions within a stated period of time. SIL can be divided into the target SIL(or required SIL) and the result SIL. The target SIL is determined by the risk analysis at the analysis phase of safety lifecycle and the result SIL is calculated during SIL verification at the realization phase of safety lifecycle. The target SIL is determined by the risk analysis like LOPA(Layer Of Protection Analysis), Risk Graph, Risk Matrix and the result SIL is calculated by HFT(Hardware Fault Tolerance), SFF(Safe Failure Fraction) and PFDavg(average Probability of dangerous Failure on Demand). SIL is applied to various areas such as process safety, machinery(road vehicles, railway application, rotating equipment, etc), nuclear sector which functional safety is applied. The functional safety is the part of the overall safety relating to the EUC and the EUC control system that depends on the correct functioning of the E/E/PE safety-related systems and other risk reduction measures. SIL is applied only to the functional safety of SIS(Safety Instrumented System) in safety. EUC is the abbreviation of Equipment Under Control and is the equipment, machinery, apparatus or plant used for manufacturing, process, transportation, medical or other activities.

Advanced discretization of rock slope using block theory within the framework of discontinuous deformation analysis

  • Wang, Shuhong;Huang, Runqiu;Ni, Pengpeng;Jeon, Seokwon
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.723-738
    • /
    • 2017
  • Rock is a heterogeneous material, which introduces complexity in the analysis of rock slopes, since both the existing discontinuities within the rock mass and the intact rock contribute to the degradation of strength. Rock failure is often catastrophic due to the brittle nature of the material, involving the sliding along structural planes and the fracturing of rock bridge. This paper proposes an advanced discretization method of rock mass based on block theory. An in-house software, GeoSMA-3D, has been developed to generate the discrete fracture network (DFN) model, considering both measured and artificial joints. Measured joints are obtained from the photogrammetry analysis on the excavation face. Statistical tools then facilitate to derive artificial joints within the rock mass. Key blocks are searched to provide guidance on potential reinforcement measures. The discretized blocky system is subsequently implemented into a discontinuous deformation analysis (DDA) code. Strength reduction technique is employed to analyze the stability of the slope, where the factor of safety can be obtained once excessive deformation of slope profile is observed. The combined analysis approach also provides the failure mode, which can be used to guide the choice of strengthening strategy if needed. Finally, an illustrated example is presented for the analysis of a rock slope of 20 m height inclined at $60^{\circ}$ using combined GeoSMA-3D and DDA calculation.

Spike Rejection Method for Improving Altitude Control Performance of Quadrotor UAV Using Ultrasonic Rangefinder (초음파 거리계를 이용하는 쿼드로터 무인항공기의 고도 제어 성능 향상을 위한 스파이크 제거 기법)

  • Kim, Sung-Hoon;Choi, Kyeung-Sik;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.196-202
    • /
    • 2016
  • In this paper, a stationary wavelet transform method is proposed for improving the altitude control performance of quadrotor UAV using an ultrasonic rangefinder. A ground tests are conducted using an ultrasonic rangefinder that is much used for vertical takeoff and landing. An ultrasonic rangefinder suffers from signal's spike due to specular reflectance and acoustic noise. The occurred spikes in short time span need to be analyzed at both sides time and frequency domain. It was known that stationary wavelet transform is the transferring solution to the problem occurred by down sampling from DWT also more efficient to remove noise than DWT. The analyzed spikes of the ultrasonic rangefinder using a stationary wavelet transform and experimental results show that it can effectively remove the spikes of the ultrasonic rangefinder.

Design of Security Module using Key Exchange Protocol in Digital Contents (키 교환 프로토콜을 이용한 디지털콘텐츠 보호 모듈 설계)

  • 권도윤;이경원;김정호
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.3
    • /
    • pp.40-46
    • /
    • 2003
  • In the paper, designed digital contents security module to check unlawfulness reproduction and distribution of digital contents. This paper applied Diffie-Hellman algorithm that use discrete logarithm and random number as primary for public key application to create encryption key that agree each other through communication channel between DCPS and HOST, and applied Triple DES repeat DES 3 times through 2 different encryption key that is selecting ANSI X9.17 that is key management standard, ISO 8732 and PEM(Privacy-Enhanced Mail) etc. by secondary protection for safe transmission of digital contents in transmission line. Designed security module consist of key exchange module, key derivation module and copy protection processing module. Digital contents security module that design in this thesis checks reproduction and distribution of digital contents by unauthenticated user through user certification function and digital contents encryption function, and protect digital contents transmission line.

  • PDF

The history, present status and future perspective of electronics and electronic technologies (전자공학 및 전자기술의 역사, 현황 그리고 미래)

  • 조규심
    • Journal of the Korean Professional Engineers Association
    • /
    • v.24 no.6
    • /
    • pp.106-112
    • /
    • 1991
  • Electronics has different meanings to different people and in different countries. Hence, let me difine the term in the sense that it is used here. Electronics in the science and the technology of the passage of charged particles in a gas, in a vacumn, or in a semiconductor. The beginning of electronics came in 1895 when H. A. Lorentz postulated the existence of discrete charges called electrons. Two years later J.J. Thompson found these electrons experimentally. In the same year (1897) Braun built what was probaly the first electron tube, essentially a primitive cathode-ray tube. It was not until the start of the 20th century that electronics began to take technological shape. In 1904 Fleming invented the diode which he called a valve. This era begins with the invention of the transistor about 30 years ago. The history of this invention is interesting. M.J. Kelly, director of research(and later president of Bell Laboratories), had the foresight to realize that the telephone system needed electronic switching and better amplifiers. Vacuum tubes were not very reliable, principally because they generated a great deal of heat even when they were not being used, and, particularly, because filaments burned out and the tubes had to be replaced. In 1945 a solid-state physics group wa formed. The foregoing completes the history of electronics and electronic industries up to 1978. There is already a start toward a merging of the computer and the communication industries which might be called information manipulation. This includes storage of information, sorting, computation, information retrieval, and transmission of data. This combination of the computer and the communication fields will penetrate many disciplines. Applications will be made in the fields of law, medicine, biological sciences, engineering, library services publishing banking, reservation systems, management control, education, and defense.

  • PDF

Simulation Analysis for Verifying an Implementation Method of Higher-performed Packet Routing

  • Park, Jaewoo;Lim, Seong-Yong;Lee, Kyou-Ho
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.440-443
    • /
    • 2001
  • As inter-network traffics grows rapidly, the router systems as a network component becomes to be capable of not only wire-speed packet processing but also plentiful programmability for quality services. A network processor technology is widely used to achieve such capabilities in the high-end router. Although providing two such capabilities, the network processor can't support a deep packet processing at nominal wire-speed. Considering QoS may result in performance degradation of processing packet. In order to achieve foster processing, one chipset of network processor is occasionally not enough. Using more than one urges to consider a problem that is, for instance, an out-of-order delivery of packets. This problem can be serious in some applications such as voice over IP and video services, which assume that packets arrive in order. It is required to develop an effective packet processing mechanism leer using more than one network processors in parallel in one linecard unit of the router system. Simulation analysis is also needed for verifying the mechanism. We propose the packet processing mechanism consisting of more than two NPs in parallel. In this mechanism, we use a load-balancing algorithm that distributes the packet traffic load evenly and keeps the sequence, and then verify the algorithm with simulation analysis. As a simulation tool, we use DEVSim++, which is a DEVS formalism-based hierarchical discrete-event simulation environment developed by KAIST. In this paper, we are going to show not only applicability of the DEVS formalism to hardware modeling and simulation but also predictability of performance of the load balancer when implemented with FPGA.

  • PDF

A Novel Transmission Scheme for Compressed Health Data Using ISO/IEEE11073-20601

  • Kim, Sang-Kon;Kim, Tae-Kon;Lee, Hyungkeun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5855-5877
    • /
    • 2017
  • In view of personal health and disease management based on cost effective healthcare services, there is a growing need for real-time monitoring services. The electrocardiogram (ECG) signal is one of the most important of health information and real-time monitoring of the ECG can provide an efficient way to cope with emergency situations, as well as assist in everyday health care. In this system, it is essential to continuously collect and transmit large amount of ECG data within a given time and provide maximum user convenience at the same time. When considering limited wireless capacity and unstable channel conditions, appropriate signal processing and transmission techniques such as compression are required. However, ISO/IEEE 11073 standards for interoperability between personal health devices cannot properly support compressed data transmission. Therefore, in the present study, the problems for handling compressed data are specified and new extended agent and manager are proposed to address the problems while maintaining compatibility with existing devices. Extended devices have two PM-stores enabling compression and a novel transmission scheme. A variety of compression techniques can be applied; in this paper, discrete cosine transformation (DCT) is used. And the priority of information after DCT compression enables new transmission techniques for performance improvement. The performance of the compressed signal and the original uncompressed signal transmitted over the noisy channel are compared in terms of percent root mean square difference (PRD) using our simulation results. Our transmission scheme shows a better performance and complies with 11073 standards.