• Title/Summary/Keyword: discrete shear

Search Result 190, Processing Time 0.028 seconds

Analysis of Conjugated Heat Transfer for the Diffuser Exposed to Hot Combustion Gas (고온 연소가스에 노출되는 디퓨저의 복합 열전달량 계산)

  • Jin, Sang-Wook;Na, Jae-Jung;Rhe, Sang-Ho;Lee, Kyu-Jun;Lim, Jin-Shik;Kim, Sung-Don
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.231-234
    • /
    • 2010
  • Analysis of conjugated heat transfer has been conducted for the diffuser exposed to hot combustion gas to design the mechanical durability in high temperature. All the heat transfer means, conduction, convection and radiation have been considered to calculate the total heat flux from hot gas to diffuser surface. The calculation has been implemented by two kinds of methods. One thing is one dimensional method based on empirical equations. The other is CFD(Computational Fluid Dynamics) axisymmetric calculation containing ${\kappa}-{\omega}$ SST(Shear Stress Transport) turbulent model and DO(Discrete Ordinate) radiation model. The derived results of two methods have compared and showed similar values. From this result, the amount of cooling water and the dimension of water cooling channel were decided.

  • PDF

Development and testing of cored moment resisting stub column dampers

  • Hsiao, Po-Chien;Lin, Kun-Sian;Liao, Wei-Chieh;Zhu, Limeng;Zhang, Chunwei
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.107-122
    • /
    • 2020
  • Moment resisting stub columns (MRSCs) have increasingly adopted in special moment-resisting frame (SMF) systems in steel building structures, especially in Asian countries. The MRSCs typically provide a lower deformation capacity compared to shear-panel stub columns, a limited post-yield stiffness, and severe strength degradation as adopting slender webs. A new MRSC design with cored configuration, consisting of a core-segment and two side-segments using different steel grades, has been proposed in the study to improve the demerits mentioned above. Several full-scale components of the cored MRSC were experimentally investigated focusing on the hysteretic performance of plastic hinges at the ends. The effects of the depths of the core-segment and the adopted reduced column section details on the hysteretic behavior of the components were examined. The measured hysteretic responses verified that the cored MRSC enabled to provide early yielding, great ductility and energy dissipation, enhanced post-yield stiffness and limited strength degradation due to local buckling of flanges. A parametric study upon the dimensions of the cored MRSC was then conducted using numerical discrete model validated by the measured responses. Finally, a set of model equations were established based on the results of the parametric analysis to accurately estimate strength backbone curves of the cored MRSCs under increasing-amplitude cyclic loadings.

Effect of Joint Sets on the Earth Pressure against the Support System in a Jointed Rock Mass (절리형성 암반지층 굴착벽체에 작용하는 토압에 대한 절리군의 영향)

  • Son, Moorak;Adedokun, Solomon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.12
    • /
    • pp.59-69
    • /
    • 2015
  • This study examined the magnitude and distribution of earth pressure on the support system in a jointed rock mass due to the different joint sets as well as varying the rock type and joint condition (joint shear strength and joint inclination angle). Based on a physical model test and its numerical simulation, a series of numerical parametric analyses were conducted using a discrete element method. The results showed that the induced earth pressure was affected significantly by a joint set depending on the inclusion of the joint inclination angle, which induces a joint sliding condition, but the number of joint sets alone was not important, even though the earth pressure could be increased slightly as the number of joint sets is increased. In addition, the study results were compared with Peck's earth pressure for soil ground, which indicated that the earth pressure in a jointed rock mass could be considerably different from that in soil ground. The study suggests that the effects of joint sets as well as rock type and joint condition are important factors affecting the earth pressure in a jointed rock mass and they should be considered when designing a support system in a jointed rock mass.

Mechanical properties and failure mechanisms of sandstone with pyrite concretions under uniaxial compression

  • Chen, Shao J.;Ren, Meng Z.;Wang, Feng;Yin, Da W.;Chen, Deng H.
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.385-396
    • /
    • 2020
  • A uniaxial compression test was performed to analyse the mechanical properties and macroscale and mesoscale failure mechanisms of sandstone with pyrite concretions. The effect of the pyrite concretions on the evolution of macroscale cracks in the sandstone was further investigated through numerical simulations with Particle Flow Code in 2D (PFC2D). The results revealed that pyrite concretions substantially influence the mechanical properties and macroscale and mesoscale failure characteristics of sandstone. During the initial loading stage, significant stress concentrations occurred around the edges of the pyrite concretion accompanied by the preferential generation of cracks. Meanwhile, the events and cumulative energy counts of the acoustic emission (AE) signal increased rapidly because of friction sliding between the concretion and sandstone matrix. As the axial stress increased, the degree of the stress concentration remained relatively unchanged around the edges of the concretions. The cracks continued growing rapidly around the edges of the concretions and gradually expanded toward the centre of the sample. During this stage, the AE events and cumulative energy counts increased quite slowly. As the axial stress approached the peak strength of the sandstone, the cracks that developed around the edges of the concretion started to merge with cracks that propagated at the top-left and bottom-right corners of the sample. This crack evolution ultimately resulted in the shear failure of the sandstone sample around the edges of the pyrite concretions.

Physical test and PFC2D simulation of the failure mechanism of echelon joint under uniaxial compression

  • Sarfarazi, V.;Abharian, S.;Ghalam, E. Zarrin
    • Computers and Concrete
    • /
    • v.27 no.2
    • /
    • pp.99-109
    • /
    • 2021
  • Experimental and discrete element methods were used to investigate the effects of echelon non-persistent joint on the failure behaviour of joint's bridge area under uniaxial compressive test. Concrete samples with dimension of 150 mm×100 mm×50 mm were prepared. Uniaxial compressive strength and tensile strength of concrete were 14 MPa and 1MPa, respectivly. Within the specimen, three echelon non-persistent notches were provided. These joints were distributed on the three diagonal plane. the angle of diagonal plane related to horizontal axis were 15°, 30° and 45°. The angle of joints related to diagonal plane were 30°, 45°, 60°. Totally, 9 different configuration systems were prepared for non-persistent joint. In these configurations, the length of joints were taken as 2 cm. Similar to those for joints configuration systems in the experimental tests, 9 models with different echelon non-persistent joint were prepared in numerical model. The axial load was applied to the model by rate of 0.05 mm/min. the results show that the failure process was mostly governed by both of the non-persistent joint angle and diagonal plane angle. The compressive strengths of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. It was shown that the shear behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the joint angle. The strength of samples increase by increasing both of the joint angle and diagonal plane angle. The failure pattern and failure strength are similar in both methods i.e. the experimental testing and the numerical simulation methods.

Development of Optimal Design Technique of RC Beam using Multi-Agent Reinforcement Learning (다중 에이전트 강화학습을 이용한 RC보 최적설계 기술개발)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.29-36
    • /
    • 2023
  • Reinforcement learning (RL) is widely applied to various engineering fields. Especially, RL has shown successful performance for control problems, such as vehicles, robotics, and active structural control system. However, little research on application of RL to optimal structural design has conducted to date. In this study, the possibility of application of RL to structural design of reinforced concrete (RC) beam was investigated. The example of RC beam structural design problem introduced in previous study was used for comparative study. Deep q-network (DQN) is a famous RL algorithm presenting good performance in the discrete action space and thus it was used in this study. The action of DQN agent is required to represent design variables of RC beam. However, the number of design variables of RC beam is too many to represent by the action of conventional DQN. To solve this problem, multi-agent DQN was used in this study. For more effective reinforcement learning process, DDQN (Double Q-Learning) that is an advanced version of a conventional DQN was employed. The multi-agent of DDQN was trained for optimal structural design of RC beam to satisfy American Concrete Institute (318) without any hand-labeled dataset. Five agents of DDQN provides actions for beam with, beam depth, main rebar size, number of main rebar, and shear stirrup size, respectively. Five agents of DDQN were trained for 10,000 episodes and the performance of the multi-agent of DDQN was evaluated with 100 test design cases. This study shows that the multi-agent DDQN algorithm can provide successfully structural design results of RC beam.

Structural Analysis of the Danyang Area, Danyang Coalfield, Korea (단양지역의 지질구조)

  • Kim, Jeong Hwan;Koh, Hee Jae
    • Economic and Environmental Geology
    • /
    • v.25 no.1
    • /
    • pp.61-72
    • /
    • 1992
  • The Danyang area consists of the thrust and folded sedimentary rocks of Paleozoic and Mesozoic Era. The area is bounded by major tectonic units which are the Gagdong Thrust to the west and the Okdong Fault to the east. According to the structural analyses, the area is affected by polyphase deformation. This study establishes deformational sequence in the area. Mylonite zone along the Okdong Fault corresponds to the first generation of structures ($D_1$). $D_1$-structures are discrete shear zone in the Jangsan Formation and bedding parallel extensional deformation in the Cambro-Ordovician sequences. $D_2$-structures were formed prior to the sedimentation of the Jurassic Bansong Group, which are the NW-trending fold and linear structures. After sedimentation of the Bansong Group, the area is strongly affected by the Daebo Orogeny which produces NE-trending thrusts, folds and linear structures. Earlier structures were tightened and rotated toward NE. Some thrust faults did not propagate into the Bansong Group. It is suggested either the Bansong Group acted as a decoupling horizon or rest on unconformably on the thrust faults. The area is weakly affected by $D_4$-event of which structures are E-W trending folds and faults. The Jugryeong Fault clearly cut the earlier folds and thrust faults. The rocks within the fault zone were sliced and rotated during the strike-slip movements. Block rotation and transpressional features can be commonly observed.

  • PDF

Effect of Joint Cohesive Strength on the Earth Pressure against the Support System in a Jointed Rock Mass (절리형성 암반지층 굴착벽체 작용토압에 대한 절리 점착강도의 영향)

  • Son, Moorak;Solomon, Adedokun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.41-53
    • /
    • 2014
  • This study examined the magnitude and distribution of the earth pressure on the support system in a jointed rock mass by considering different joint shear strength, rock type, and joint inclination angle. The study particularly focused on the effect of joint cohesive strength for a certain condition. Based on a physical model test (Son and Park, 2014), extended parametric studies were conducted considering rock-structure interactions based on the discrete element method, which can consider the rock and joint characteristics of rock mass. The results showed the earth pressure was strongly affected by the joint cohesive strength as well as the rock type and joint inclination angle. The study indicated that the effect of joint cohesive strength was particularly significant when a rock mass was under the condition of joint sliding. This paper investigates the magnitude of joint cohesive strength to prevent a joint sliding for each different condition. The test results were also compared with Peck's earth pressure, which has been frequently used for soil ground. The comparison indicated that the earth pressure in a jointed rock mass can be significantly different from that in soil ground. This study is expected to provide a better understanding of the earth pressure on the support system in a jointed rock mass.

Multiscale Finite Element Analysis of Needle-Punched C/SiC Composites through Subcell Modeling (서브셀 모델링을 통한 니들 펀치 C/SiC 복합재료의 멀티스케일 유한요소해석)

  • Lim, Hyoung Jun;Choi, Ho-Il;Lee, Min-Jung;Yun, Gun Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • In this paper, a multi-scale finite element (FE) modeling methodology for three-dimensional (3D) needle-punched (NP) C/SiC with a complex microstructure is presented. The variations of the material properties induced by the needle-punching process and complex geometrical features could pose challenges when estimating the material behavior. For considering these features of composites, a 3D microscopic FE approach is introduced based on micro-CT technology to produce a 3D high fidelity FE model. The image processing techniques of micro-CT are utilized to generate discrete-gray images and reconstruct the high fidelity model. Furthermore, a subcell modeling technique is developed for the 3D NP C/SiC based on the high fidelity FE model to expand to the macro-scale structural problem. A numerical homogenization approach under periodic boundary conditions (PBCs) is employed to estimate the equivalent behavior of the high fidelity model and effective properties of subcell components, considering geometry continuity effects. For verification, proposed models compare excellently with experimental results for the mechanical behavior of tensile, shear, and bending under static loading conditions.

Effects of particle size and loading rate on the tensile failure of asphalt specimens based on a direct tensile test and particle flow code simulation

  • Q. Wang;D.C. Wang;J.W. Fu;Vahab Sarfarazi;Hadi Haeri;C.L. Guo;L.J. Sun;Mohammad Fatehi Marji
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.607-619
    • /
    • 2023
  • This study, it was tried to evaluate the asphalt behavior under tensile loading conditions through indirect Brazilian and direct tensile tests, experimentally and numerically. This paper is important from two points of view. The first one, a new test method was developed for the determination of the direct tensile strength of asphalt and its difference was obtained from the indirect test method. The second one, the effects of particle size and loading rate have been cleared on the tensile fracture mechanism. The experimental direct tensile strength of the asphalt specimens was measured in the laboratory using the compression-to-tensile load converting (CTLC) device. Some special types of asphalt specimens were prepared in the form of slabs with a central hole. The CTLC device is then equipped with this specimen and placed in the universal testing machine. Then, the direct tensile strength of asphalt specimens with different sizes of ingredients can be measured at different loading rates in the laboratory. The particle flow code (PFC) was used to numerically simulate the direct tensile strength test of asphalt samples. This numerical modeling technique is based on the versatile discrete element method (DEM). Three different particle diameters were chosen and were tested under three different loading rates. The results show that when the loading rate was 0.016 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis till coalescence to the model boundary. When the loading rate was 0.032 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis. The branching occurs in these cracks. This shows that the crack propagation is under quasi-static conditions. When the loading rate was 0.064 mm/sec, mixed tensile and shear cracks were initiated below the loading walls and branching occurred in these cracks. This shows that the crack propagation is under dynamic conditions. The loading rate increases and the tensile strength increases. Because all defects mobilized under a low loading rate and this led to decreasing the tensile strength. The experimental results for the direct tensile strengths of asphalt specimens of different ingredients were in good accordance with their corresponding results approximated by DEM software.