• 제목/요약/키워드: discrete optimization

검색결과 511건 처리시간 0.022초

이산설계공간에서 직교배열표를 이용한 순차적 알고리듬의 국부해 (Local Solution of a Sequential Algorithm Using Orthogonal Arrays in a Discrete Design Space)

  • 이정욱;박경진
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1399-1407
    • /
    • 2004
  • Structural optimization has been carried out in continuous design space or in discrete design space. Generally, available designs are discrete in design practice. However, the methods for discrete variables are extremely expensive in computational cost. An iterative optimization algorithm is proposed for design in a discrete space, which is called a sequential algorithm using orthogonal arrays (SOA). We demonstrate verifying the fact that a local optimum solution can be obtained from the process with this algorithm. The local optimum solution is defined in a discrete design space. Then the search space, which is a set of candidate values of each design variables formed by the neighborhood of a current design point, is defined. It is verified that a local optimum solution can be found by sequentially moving the search space. The SOA algorithm has been applied to problems such as truss type structures. Then it is confirmed that a local solution can be obtained by using the SOA algorithm

이산 설계변수를 포함하고 있는 깊은 홈 볼 베어링의 고부하용량 설계 (Design Optimization of Deep Groove Ball Bearing with Discrete Variables for High-Load Capacity)

  • 윤기찬;조영석;최동훈
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.1940-1948
    • /
    • 2000
  • A design method for maximizing fatigue life of the deep groove ball bearing without enlarging mounting space is proposed by using a genetic algorithm. The use of gradient-based optimization methods for the design of the bearing is restricted because this design problem is characterized by the presence of discrete design variables such as the number of balls and standard ball diameter. Therefore, the design problem of rolling element bearings is a constrained discrete optimization problem. A genetic algorithm using real coding is used to efficiently find the optimum discrete design values. To effectively deal with the design constraints, a ranking method is suggested for constructing a fitness function in the genetic algorithm. Constrains for manufacturing are applied in optimization scheme. Results obtained for several 63 series deep groove ball bearings demonstrated the effectiveness of the proposed design methodology by showing that the average basic dynamic capacities of optimally designed bearings increased about 9-34% compared with the standard ones.

Network Selection Algorithm for Heterogeneous Wireless Networks Based on Multi-Objective Discrete Particle Swarm Optimization

  • Zhang, Wenzhu;Kwak, Kyung-Sup;Feng, Chengxiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권7호
    • /
    • pp.1802-1814
    • /
    • 2012
  • In order to guide users to select the most optimal access network in heterogeneous wireless networks, a network selection algorithm is proposed which is designed based on multi-objective discrete particle swarm optimization (Multi-Objective Discrete Particle Swarm Optimization, MODPSO). The proposed algorithm keeps fast convergence speed and strong adaptability features of the particle swarm optimization. In addition, it updates an elite set to achieve multi-objective decision-making. Meanwhile, a mutation operator is adopted to make the algorithm converge to the global optimal. Simulation results show that compared to the single-objective algorithm, the proposed algorithm can obtain the optimal combination performance and take into account both the network state and the user preferences.

혼합이산형최적화기법을 이용한 뒷부벽식 옹벽의 최적설계 (Optimum Design of Counterforted Wall Using Mixed Discrete Optimization Method)

  • 이서영;김종옥
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.129-135
    • /
    • 2001
  • The optimum design problems for the design of counterforted wall were formulated and computer programing to solve these problems were developed in this study. Both discrete optimization and continuous optimization method were applied to the design of counterforted wall and the results of these optimization methods were compared each other.

  • PDF

유전자 알고리즘에 의한 평면 및 입체 트러스의 형상 및 위상최적설계 (Shape & Topology Optimum Design of Truss Structures Using Genetic Algorithms)

  • 여백유;박춘욱;강문명
    • 한국공간구조학회논문집
    • /
    • 제2권3호
    • /
    • pp.93-102
    • /
    • 2002
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithms. The algorithm can perform both shape and topology optimum designs of trusses. The developed algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithms. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithms were verified by applying the algorithm to optimum design examples

  • PDF

Shape & Topology GAs에 의한 트러스의 단면, 형상 및 위상최적설계 (Size, Shape and Topology Optimum Design of Trusses Using Shape & Topology Genetic Algorithms)

  • 박춘욱;여백유;김수원
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.43-52
    • /
    • 2004
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithms. The algorithm can perform both shape and topology optimum designs of trusses. The developed algerian was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithms. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithms were verified by applying the algorithm to optimum design examples

  • PDF

섬유 배열각의 이산성과 물성치의 불확실성을 고려한 복합재료 적층 평판의 최적 설계 (Optimal Design of Composite Laminated Plates with the Discreteness in Ply Angles and Uncertainty in Material Properties Considered)

  • 김태욱;신효철
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.369-380
    • /
    • 2001
  • Although extensive efforts have been devoted to the optimal design of composite laminated plates in recent years, some practical issues still need further research. Two of them are: the handling of the ply angle as either continuous or discrete; and that of the uncertainties in material properties, which were treated as continuous and ignored respectively in most researches in the past. In this paper, an algorithm for stacking sequence optimization which deals with discrete ply angles and that for thickness optimization which considers uncertainties in material properties are used for a two step optimization of composite laminated plates. In the stacking sequence optimization, the branch and bound method is modified to handle discrete variables; and in the thickness optimization, the convex modeling is used in calculating the failure criterion, given as constraint, to consider the uncertain material properties. Numerical results show that the optimal stacking sequence is found with fewer evaluations of objective function than expected with the size of feasible region taken into consideration; and the optimal thickness increases when the uncertainties of elastic moduli considered, which shows such uncertainties should not be ignored for safe and reliable designs.

기어장치 설계를 위한 유전알고리듬 기반 연속-이산공간 최적화 및 다목적함수 순차적 설계 방법 (Genetic Algorithm Based Continuous-Discrete Optimization and Multi-objective Sequential Design Method for the Gear Drive Design)

  • 이정상;정태형
    • 한국공작기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.205-210
    • /
    • 2007
  • The integration method of binary and real encoding in genetic algorithm is proposed to deal with design variables of various types in gear drive design. The method is applied to optimum design of multi-stage gear drive. Integer and Discrete type design variables represent the number of teeth and module, and continuous type design variables represent face width, helix angle and addendum modification factor etc. The proposed genetic algorithm is applied for the gear ratio optimization and the volume optimization(minimization) of multi-stage geared motor which is used in field. In result, the proposed design optimization method shows an effectiveness in optimum design process and the new design has a better results compared with the existing design.

Phasor Discrete Particle Swarm Optimization Algorithm to Configure Micro-grids

  • Bae, In-Su;Kim, Jin-O
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권1호
    • /
    • pp.9-16
    • /
    • 2012
  • The present study presents the Phasor Discrete Particle Swarm Optimization (PDPSO) algorithm, an effective optimization technique, the multi-dimensional vectors of which consist of magnitudes and phase angles. PDPSO is employed in the configuration of micro-grids. Micro-grids are concepts of distribution system that directly unifies customers and distributed generations (DGs). Micro-grids could supply electric power to customers and conduct power transaction via a power market by operating economic dispatch of diverse cost functions through several DGs. If a large number of micro-grids exist in one distribution system, the algorithm needs to adjust the configuration of numerous micro-grids in order to supply electric power with minimum generation cost for all customers under the distribution system.

Discrete optimization of trusses using an artificial bee colony (ABC) algorithm and the fly-back mechanism

  • Fiouz, A.R.;Obeydi, M.;Forouzani, H.;Keshavarz, A.
    • Structural Engineering and Mechanics
    • /
    • 제44권4호
    • /
    • pp.501-519
    • /
    • 2012
  • Truss weight is one of the most important factors in the cost of construction that should be reduced. Different methods have been proposed to optimize the weight of trusses. The artificial bee colony algorithm has been proposed recently. This algorithm selects the lightest section from a list of available profiles that satisfy the existing provisions in the design codes and specifications. An important issue in optimization algorithms is how to impose constraints. In this paper, the artificial bee colony algorithm is used for the discrete optimization of trusses. The fly-back mechanism is chosen to impose constraints. Finally, with some basic examples that have been introduced in similar articles, the performance of this algorithm is tested using the fly-back mechanism. The results indicate that the rate of convergence and the accuracy are optimized in comparison with other methods.