• Title/Summary/Keyword: discrete modelling

Search Result 115, Processing Time 0.025 seconds

Multi-UAV Mission Allocation and Optimization Technique Based on Discrete-Event Modeling and Simulation (이산 사건 모델링 및 시뮬레이션 기반의 다수 무인기 임무 할당 및 최적화 기법)

  • Lee, Dong Ho;Jang, Hwanchol;Kim, Sang-Hwan;Chang, Woohyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.159-166
    • /
    • 2020
  • In this paper, we propose a heterogenous mission allocation technique for multi-UAV system based on discrete event modeling. We model a series of heterogenous mission creation, mission allocation, UAV departure, mission completion, and UAV maintenance and repair process as a mathematical discrete event model. Based on the proposed model, we then optimize the number of UAVs required to operate in a given scenario. To validate the optimized number of UAVs, the simulations are executed repeatedly, and their results are analyzed. The proposed mission allocation technique can be used to efficiently utilize limited UAV resources, and allow the human operator to establish an optimal mission plan.

Review on Discontinuum-based Coupled Hydro-Mechanical Analyses for Modelling a Deep Geological Repository for High-Level Radioactive Waste (고준위방사성폐기물 심층처분장 모델링을 위한 불연속체 기반 수리-역학 복합거동 해석기법 현황 분석)

  • Kwon, Saeha;Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.31 no.5
    • /
    • pp.309-332
    • /
    • 2021
  • Natural barrier systems surrounding the geological repository for the high-level radioactive waste should guarantee the hydraulic performance for preventing or delaying the leakage of radionuclide. In the case of the behavior of a crystalline rock, the hydraulic performance tends to be decided by the existence of discontinuities, so the coupled hydro-mechanical(HM) processes on the discontinuities should be characterized. The discontinuum modelling can describe the complicated behavior of discontinuities including creation, propagation, deformation and slip, so it is appropriate to model the behavior of a crystalline rock. This paper investigated the coupled HM processes in discontinuum modelling such as UDEC, 3DEC, PFC, DDA, FRACOD and TOUGH-UDEC. Block-based discontinuum methods tend to describe the HM processes based on the fluid flow through the discontinuities, and some methods are combined with another numerical tool specialized in hydraulic analysis. Particle-based discontinuum modelling describes the overall HM processes based on the fluid flow among the particles. The discontinuum methods that are currently available have limitations: exclusive simulations for two-dimension, low hydraulic simulation efficiency, fracture-dominated fluid flow and simplified hydraulic analysis, so it could be improper to the modelling the geological repository. Based on the concepts of various discontinuum modelling compiled in this paper, the advanced numerical tools for describing the accurate coupled HM processes of the deep geological repository should be developed.

Characterization of Groundwater Flow to Horizontal or Slanted Well Using Numerical Modeling (수치 모사를 활용한 수평 혹은 경사형 특수 정호 지하수 흐름 특성 평가)

  • Kim, Hyoung-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.2
    • /
    • pp.54-61
    • /
    • 2008
  • The drawdown distribution due to pumping by horizontal or slanted wells is analyzed by numerical modelling. In the numerical modelling uses 1-D discrete element feature included in commercial groundwater modeling program FEFLOW (version 5.1) and the results are compared with the semi analytic solution which uses superposition of successive point sources proposed by Zhan and Zlotnik (2002). Results of the numerical modeling agree well with the semi analytic solution except for very near field region of sink sources. The drawdown distribution due to pumping in riverbank filtration(RBF) plan site can be evaluated quantitatively by the numerical modeling in this study.

Groundwater Flow Characteristics in Crystalline Rock : Review (결정질암반에서의 지하수유동 연구경향)

  • 김천수
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.137-145
    • /
    • 1991
  • Groundwater flow in fractured rocks generates many challenging problems to scientist and engineers in the projects related to oil and geothermal reservoirs, subsurface contaminations and underground openings. To circumvent these problems, the numerical simulation of groundwater system is used as an established tool in these days. Discrete modelling approach emphasizes geometric parameters, aperture and transport properties of fracture. On the other hand, continuum modelling approach uses the parameters formulated in a way of average hydraulic property. In recent years, the results of field observations from underground opening indicate that groundwater in rock mass flows in a channel form. The channel flow is postulated as the result of the combined effects of geometric pattern and aperture variation.

  • PDF

Structural Analysis of Stone Pagoda Structure considering Soft Soil Ground Characteristics (연약지반 특성을 고려한 석탑구조물의 구조해석)

  • Kim, Ho-Ryong;Shin, Hyo-Bum;Park, Young-Sin;Kang, Myoung-Hee;Hong, Souk-Il;Kim, Ho-Soo
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.70-73
    • /
    • 2008
  • Because the inclination and crack of stone pagoda structure are caused by the depth difference of soft soil ground and ground subsidence in weak zone, a long-term conservation of stone pagoda structure is difficult. But it is insufficient to analyze the behavior of stone pagoda structure considering soft soil ground in our country. Therefore, we find the structural effect happening in stone pagoda structure by analyzing mechanically a specific of soft soil ground and carry out structural analysis and structural modelling of stone pagoda structure that considers soft soil ground by discrete element method.

  • PDF

Design and implementation of low-power VLSI system using software control of supply voltages (소프트웨어 전압 제어를 사용한 저전력 VLSI 시스템의 설계 및 구현)

  • Lee, Seong-Su
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.4
    • /
    • pp.72-83
    • /
    • 2002
  • In this paper, a novel low-power VLSI system architecture was proposed. By exploiting software control of supply voltages, it simplifies hardware implementation, reduces power consumption efficiently, and avoids complicated interface circuits. The proposed architecture models clock frequency-supply voltage relationship by software modelling, enables individual control of supply voltages for all chips in the system, and restricts clock frequency to discrete levels of $f_{CLK}$, $f_{CLK}$2, $f_{CLK}$3... where $f_{CLK}$ is the master clock frequency A prototype system was implemented by modifying off-the-shelf microprocessor evaluation board and adding simple discrete devices such as level shifters and voltage switches. It was measured that the power consumption was reduced from 0.58W to 0.12W in the Prototype system. system.

Earthquake behavior of M1 minaret of historical Sultan Ahmed Mosque (Blue Mosque)

  • Kocaturk, Turgut;Erdogan, Yildirim Serhat
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.539-558
    • /
    • 2016
  • Minarets are almost the inevitable part of Mosques in Islam and according to some, from a philosophical point of view, today they symbolize the spiritual elevation of man towards God. Due to slenderness, minarets are susceptible to earthquakes and wind loads. They are mostly built in a masonry style by using cut limestone blocks or occasionally by using bricks. In this study, one minaret (M1 Minaret) of one of the charmest mosques of Turkey, Sultan Ahmed Mosque, popularly known as Blue Mosque, built between 1609 and 1616 on the order of Sultan Ahmed by the architect Mehmet Agha is investigated under some registered earthquake loads. According to historical records, a great earthquake hit Istanbul and/or its close proximity approximately every 250 years. Ottomans tackled with the problem of building earthquake resistant, slender minarets by starting to use forged iron connectors with lead as a filler to fix them to the upper and lower and to adjacent stones instead of using traditional mortar only. Thus, the discrete stones are able to transfer tensile forces in some sense. This study investigates the contribution of lead to the energy absorption capacity of the minaret under extensive earthquakes occurred in the region. By using the software ANSYS/LS-DYNA in modelling and investigating the minaret nonlinearly, it is found out that under very big recorded earthquakes, the connectors of vertical cast iron-lead mechanism play very important role and help to keep the structure safe.

Dynamic Behavior Characteristics According to Arch Types of Arched Stone Bridge Subjected to Seismic Load (지진 하중을 받는 홍예교의 아치 형태에 따른 동적 거동 특성)

  • Kim, Ho-Soo;Lee, Seung-Hee;Jeon, Gun-Woo;Bang, Hyeok-Kyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.45-55
    • /
    • 2018
  • The arched stone bridge has been continuously deteriorated and damaged by the weathering and corrosion over time, and also natural disaster such as earthquake has added the damage. However, masonry stone bridge has the behavior characteristics as discontinuum structure and is very vulnerable to lateral load such as earthquake. So, it is necessary to analyze the dynamic behavior characteristics according to various design variables of arched stone bridge under seismic loads. To this end, the arched stone bridge can be classified according to arch types, and then the discrete element method is applied for the structural modelling and analysis. In addition, seismic loads according to return periods are generated and the dynamic analysis considering the discontinuity characteristics is carried out. Finally, the dynamic behavior characteristics are evaluated through the structural safety estimation for slip condition.

Application of a discrete vortex method for the analysis of suspension bridge deck sections

  • Taylor, I.J.;Vezza, M.
    • Wind and Structures
    • /
    • v.4 no.4
    • /
    • pp.333-352
    • /
    • 2001
  • A two dimensional discrete vortex method (DIVEX) has been developed to predict unsteady and incompressible flow fields around closed bodies. The basis of the method is the discretisation of the vorticity field, rather than the velocity field, into a series of vortex particles that are free to move in the flow field that the particles collectively induce. This paper gives a brief description of the numerical implementation of DIVEX and presents the results of calculations on a recent suspension bridge deck section. The predictions for the static section demonstrate that the method captures the character of the flow field at different angles of incidence. In addition, flutter derivatives are obtained from simulations of the flow field around the section undergoing vertical and torsional oscillatory motion. The subsequent predictions of the critical flutter velocity compare well with those from both experiment and other computations. A brief study of the effect of flow control vanes on the aeroelastic stability of the bridge is also presented and the results from DIVEX are shown to be in accordance with previous analytical and experimental studies. In conclusion, the results indicate that DIVEX is a very useful design tool in the field of wind engineering.

Discrete element modelling of geogrids with square and triangular apertures

  • Chen, Cheng;McDowell, Glenn;Rui, Rui
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.495-501
    • /
    • 2018
  • Geogrid application that has proved to be an effective and economic method of reinforcing particles, is widely used in geotechnical engineering. The discrete element method (DEM) has been used to investigate the micro mechanics of the geogrid deformation and also the interlocking mechanism that cannot be easily studies in laboratory tests. Two types of realistically shaped geogrid models with square and triangle apertures were developed using parallel bonds in PFC3D. The calibration test simulations have demonstrated that the precisely shaped triangular geogrid model is also able to reproduce the deformation and strength characteristics of geogrids. Moreover, the square and triangular geogrid models were also used in DEM pull-out test simulations with idealized shape particle models for validation. The simulation results have been shown to provide good predictions of pullout force as a function of displacement especially for the initial 30 mm displacement. For the granular material of size 40 mm, both the experimental and DEM results demonstrate that the triangular geogrid of size 75 mm outperforms the square geogrid of size 65 mm. Besides, the simulations have given valuable insight into the interaction between particle and geogrid and also revealed similar deformation behavior of geogrids during pullout. Therefore, the DEM provides a tool which enable to model other possible prototype geogrid and investigate their performance before manufacture.