• Title/Summary/Keyword: discrete logarithm

Search Result 111, Processing Time 0.029 seconds

A 2kβ Algorithm for Euler function 𝜙(n) Decryption of RSA (RSA의 오일러 함수 𝜙(n) 해독 2kβ 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.71-76
    • /
    • 2014
  • There is to be virtually impossible to solve the very large digits of prime number p and q from composite number n=pq using integer factorization in typical public-key cryptosystems, RSA. When the public key e and the composite number n are known but the private key d remains unknown in an asymmetric-key RSA, message decryption is carried out by first obtaining ${\phi}(n)=(p-1)(q-1)=n+1-(p+q)$ and then using a reverse function of $d=e^{-1}(mod{\phi}(n))$. Integer factorization from n to p,q is most widely used to produce ${\phi}(n)$, which has been regarded as mathematically hard. Among various integer factorization methods, the most popularly used is the congruence of squares of $a^2{\equiv}b^2(mod\;n)$, a=(p+q)/2,b=(q-p)/2 which is more commonly used then n/p=q trial division. Despite the availability of a number of congruence of scares methods, however, many of the RSA numbers remain unfactorable. This paper thus proposes an algorithm that directly and immediately obtains ${\phi}(n)$. The proposed algorithm computes $2^k{\beta}_j{\equiv}2^i(mod\;n)$, $0{\leq}i{\leq}{\gamma}-1$, $k=1,2,{\ldots}$ or $2^k{\beta}_j=2{\beta}_j$ for $2^j{\equiv}{\beta}_j(mod\;n)$, $2^{{\gamma}-1}$ < n < $2^{\gamma}$, $j={\gamma}-1,{\gamma},{\gamma}+1$ to obtain the solution. It has been found to be capable of finding an arbitrarily located ${\phi}(n)$ in a range of $n-10{\lfloor}{\sqrt{n}}{\rfloor}$ < ${\phi}(n){\leq}n-2{\lfloor}{\sqrt{n}}{\rfloor}$ much more efficiently than conventional algorithms.