• Title/Summary/Keyword: discrete event model

Search Result 278, Processing Time 0.024 seconds

Chemical/Biological/Radiological Protective Facility Entering Time Estimation Simulation with Procedure Analysis (화생방 방호시설의 행동 절차 분석을 통한 진입 소요시간 예측 시뮬레이션)

  • Park, Sun Ho;Lee, Hyun-Soo;Park, Moonseo;Kim, Sooyoung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.5
    • /
    • pp.40-48
    • /
    • 2014
  • As CBR(Chemical, Biological, and Radiological) attack increases, the importance of CBR protective facilities is being emphasized. When CBR warfare emerges, a task force team, who exist outside of CBR protective facility, should enter the CBR protective facility through neutralizing process in CCA(Contamination Control Area) and TFA(Toxic Free Area). If a bottleneck occurs in the process or zones, the task force team cannot enter the CBR protective facility efficiently and may cause inefficiency in its operation performance or result in casualties. The current design criteria of the CBR protective facility is only limited to ventilation system and it does not consider how much time it takes to enter the facility. Therefore, this research aims to propose the entering time estimation model with discrete event simulation. To make the simulation model, the procedure performed through CCA and TFA is defined and segmented. The actual time of the procedure are measured and adapted for the simulation model. After running the simulation model, variables effecting the entering time are selected for alternatives with adjustments. This entering time estimation model for CBR protective facility is expected to help take time into consideration during the designing phase of CBR protective facility and help CBR protective facility managers to plan facility operation in a more realistic approach.

Performance Analysis of Flow Control Method Using Virtual Switchs on ATM (ATM에서 가상 스위치를 이용한 흐름 제어 방식의 성능 분석)

  • 조미령;양성현;이상훈
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.1
    • /
    • pp.85-94
    • /
    • 2002
  • EMRCA(Explicit Max_min Rate Control Algorithm) switch, which has been proposed in the ATM(Asychronous Transfer Mode) standard, controls the ABR(Available Bit Rate) service traffic in the ATM networks. The ABR service class of ATM networks uses a feedback control mechanism to adapt to varying link capacities. The VS/VD(Virtual Source/Virtual Destination) technique offers the possibility to segment the otherwise end-to-end ABR control loop into separate loops. The improved feedback delay and the control of ABR traffic inside closed segments provide a better performance and QoS(Quality of Service) for ABR connections with respect to throughput, delay, and jitter. This paper is study of an ABR VS/VD flow control method. Linear control theory offers the means to derive correct choices of parameters and to assess performance issues, like stability of the system, during the design phase. The performance goals are a high link utilization, fair bandwidth distribution and robust operation in various environments, which are verified by discrete event simulations. The major contribution of this work is the use of linear control theory to model and design an ABR flow control method tailored for the special layout of a VS/VD switch, the simulation shows that this techniques better than conventional method.

  • PDF

Two-Level Hierarchical Production Planning for a Semiconductor Probing Facility (반도체 프로브 공정에서의 2단계 계층적 생산 계획 방법 연구)

  • Bang, June-Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.159-167
    • /
    • 2015
  • We consider a wafer lot transfer/release planning problem from semiconductor wafer fabrication facilities to probing facilities with the objective of minimizing the deviation of workload and total tardiness of customers' orders. Due to the complexity of the considered problem, we propose a two-level hierarchical production planning method for the lot transfer problem between two parallel facilities to obtain an executable production plan and schedule. In the higher level, the solution for the reduced mathematical model with Lagrangian relaxation method can be regarded as a coarse good lot transfer/release plan with daily time bucket, and discrete-event simulation is performed to obtain detailed lot processing schedules at the machines with a priority-rule-based scheduling method and the lot transfer/release plan is evaluated in the lower level. To evaluate the performance of the suggested planning method, we provide computational tests on the problems obtained from a set of real data and additional test scenarios in which the several levels of variations are added in the customers' demands. Results of computational tests showed that the proposed lot transfer/planning architecture generates executable plans within acceptable computational time in the real factories and the total tardiness of orders can be reduced more effectively by using more sophisticated lot transfer methods, such as considering the due date and ready times of lots associated the same order with the mathematical formulation. The proposed method may be implemented for the problem of job assignment in back-end process such as the assignment of chips to be tested from assembly facilities to final test facilities. Also, the proposed method can be improved by considering the sequence dependent setup in the probing facilities.

Modeling and Simulation Analysis of the Setup Reduction Method in Automobile Painting Process (자동차 도장 공정의 셋업 감소 방법 모델링 및 시뮬레이션 분석)

  • Han, Yong-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.147-154
    • /
    • 2009
  • In this study we investigate the problem of reducing color change cost at painting operations in an automobile assembly plant. Changing control logic at conveyor junction points prior to the top coat line has been proposed and analyzed using the discrete event simulation model we developed using AutoMod. We also discussed the project which initiated this research as well as the details of painting operations. Simulation analysis showed that the grouping ratio increases from 1.8 to 2.5 if the proposed control logic change is applied to the plant. Contrary to other approaches such as using dedicated equipment for resequencing, our approach has the merit of less investment cost, no need for additional space consumption. We finally note that the grouping ratio can be further increased if our algorithms is implemented as well as CRS (Color Rescheduling Storage) is installed.

Study of Situation Prediction Simulation for Navigation Information System of Ship (선박의 항행정보시스템을 위한 상황 예측 시뮬레이션 방안 연구)

  • Yi, Mi-Ra
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.127-135
    • /
    • 2010
  • Modern marine navigation requires officers on the bridge to monitor a torrent of data on both the insides and outsides of the ship from numerous useful devices. But despite these tools, navigators can still find it difficult to make a safe decision for two reasons: one is that too much data if provided too quickly tends to cause fatigue and overwhelm the officer, and the other is that any inconsistency across data from several different types of devices can lead to confusion. Indeed, the fact remains that the many marine accidents can be attributed to human error, and hence there is a strong need for decision-support tools for marine navigation. One technique of providing decision support is through the use of simulation to evaluate or predict system dynamics over time using an accurate model. This paper, as a simulation method for risk prediction for a navigation safety information system of ship, suggests a navigation prediction simulation system using various knowledge bases and discrete event simulation methodology, and supports the validity of the system through the examples of components in a restricted navigation situation scenario.

A Simulation-based Genetic Algorithm for a Dispatching Rule in a Flexible Flow Shop with Rework Process (시뮬레이션 기반 유전알고리즘을 이용한 디스패칭 연구: 재작업이 존재하는 유연흐름라인을 대상으로)

  • Gwangheon Lee;Gwanguk Han;Bonggwon Kang;Seonghwan Lee;Soondo Hong
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.75-87
    • /
    • 2022
  • This study investigates a dynamic flexible flow shop scheduling problem under uncertain rework operations for an automobile pipe production line. We propose a weighted dispatching rule (WDR) based on the multiple dispatching rules to minimize the weighted sum of average flowtime and tardiness. The set of weights in WDR should be carefully determined because it significantly affects the performance measures. We build a discrete-event simulation model and propose a genetic algorithm to optimize the set of weights considering complex and variant operations. The simulation experiments demonstrate that WDR outperforms the baseline dispatching rules in average flowtime and tardiness.

AUTOMATIC DATA COLLECTION TO IMPROVE READY-MIXED CONCRETE DELIVERY PERFORMANCE

  • Pan Hao;Sangwon Han
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.187-194
    • /
    • 2011
  • Optimizing truck dispatching-intervals is imperative in ready mixed concrete (RMC) delivery process. Intervals shorter than optimal may induce queuing of idle trucks at a construction site, resulting in a long delivery cycle time. On the other hand, intervals longer than optimal can trigger work discontinuity due to a lack of available trucks where required. Therefore, the RMC delivery process should be systematically scheduled in order to minimize the occurrence of waiting trucks as well as guarantee work continuity. However, it is challenging to find optimal intervals, particularly in urban areas, due to variations in both traffic conditions and concrete placement rates at the site. Truck dispatching intervals are usually determined based on the concrete plant managers' intuitive judgments, without sufficient and reliable information regarding traffic and site conditions. Accordingly, the RMC delivery process often experiences inefficiency and/or work discontinuity. Automatic data collection (ADC) techniques (e.g., RFID or GPS) can be effective tools to assist plant managers in finding optimal dispatching intervals, thereby enhancing delivery performance. However, quantitative evidence of the extent of performance improvement has rarely been reported to data, and this is a central reason for a general reluctance within the industry to embrace these techniques, despite their potential benefits. To address this issue, this research reports on the development of a discrete event simulation model and its application to a large-scale building project in Abu Dhabi. The simulation results indicate that ADC techniques can reduce the truck idle time at site by 57% and also enhance the pouring continuity in the RMC delivery process.

  • PDF

A Study on the Multiple Real Option Model for Evaluating Values based on Real Estate Development Scenario (다중 실물옵션을 활용한 시나리오기반 부동산 개발사업 가치평가 연구)

  • Jang, Mikyoung;Ku, Yohwan;Choi, Hyemi;Kwon, Tae-Hwan;Kim, Juhyung;Kim, Jaejun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.5
    • /
    • pp.114-122
    • /
    • 2015
  • Real estate development requires significant amount of capital investment. The project duration has been increased according to its enlarged size. For this reason, cost overrun and time delay are important risk factors that should be managed properly. As a method to hedge the risk, varoius real option methods have been presented. However, conventional project value assesment methods such as NPV(Net Present Value) have weakness to support decision making by reflecting dynamic situations in terms of variation of cost and time. Furthermore, the decision making process is serious of actions rather than discrete event. The purpose of this paper is to present a multiple real option valuation method to overcome the deterministic aspect of real option presented in previous research and practice. The method is developed as following: firstly, to select the model that can be applied in the real estate development project through a survey from previous literature on real options analysis; secondly, to apply data from office development case in order to verify the model by applying conventional real option and multiple real option valuation. According to analysis result, multiple real option provides enhanced values comparing to NPV and single real option.

Validation Technique of Simulation Model using Weighted F-measure with Hierarchical X-means (WF-HX) Method (계층적 X-means와 가중 F-measure를 통한 시뮬레이션 모델 검증 기법)

  • Yang, Dae-Gil;HwangBo, Hun;Cheon, Hyun-Jae;Lee, Hong-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.562-574
    • /
    • 2012
  • Simulation validation techniques which have been employed in most studies are statistical analysis, which validate a model with mean or variance of throughput and resource utilization as an evaluation object. However, these methods have not been able to ensure the reliability of individual elements of the model well. To overcome the problem, the weighted F-measure method was proposed, but this technique also had some limitations. First, it is difficult to apply the technique to complex system environment with numerous values of interarrival time because it assigns a class to an individual value of interarrival time. In addition, due to unbounded weights, the value of weighted F-measure has no lower bound, so it is difficult to determine its threshold. Therefore, this paper propose weighted F-measure technique with cluster analysis to solve these problems. The classes for the technique are defined by each cluster, which reduces considerable number of classes and enables to apply the technique to various systems. Moreover, we improved the validation technique in the way of assigning minimum bounded weights without any lack of objectivity.

The DEVS Integrated Development Environment for Simulation-based Battle experimentation (시뮬레이션 기반 전투실험을 위한 DEVS 통합 개발 환경)

  • Hwang, Kun-Chul;Lee, Min-Gyu;Han, Seung-Jin;Yoon, Jae-Moon;You, Yong-Jun;Kim, Sun-Bum;Kim, Jung-Hoon;Nah, Young-In;Lee, Dong-Hoon
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.39-47
    • /
    • 2013
  • Simulation based Battle Experimentation is to examine the readiness for a battle using simulation technology. It heavily relies on the weapon systems modeling and simulation. To analyze the characteristics and complexity of the weapon systems in the experiment, the modeling & simulation environment has to be able to break down the system of systems into components and make the use of high fidelity components such as real hardware in simulation. In that sense, the modular and hierarchical structure of DEVS (Discrete EVent System Specification) framework provides potentials to meet the requirements of the battle experimentation environment. This paper describes the development of the DEVS integrated development environment for Simulation based Battle Experimentation. With the design principles of easy, flexible, and fast battle simulation, the newly developed battle experimentation tool mainly consists of 3 parts - model based graphical design tool for making DEVS models and linking them with external simulators easily through diagrams, the experiment plan tool for speeding up a statistic analysis, the standard components model libraries for lego-like building up a weapon system. This noble simulation environment is to provide a means to analyze complex simulation based experiments with different levels of models mixed in a simpler and more efficient way.