• 제목/요약/키워드: discrete convolution

검색결과 52건 처리시간 0.021초

Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations

  • Akgoz, Bekir;Civalek, Omer
    • Steel and Composite Structures
    • /
    • 제11권5호
    • /
    • pp.403-421
    • /
    • 2011
  • In the present manuscript, geometrically nonlinear free vibration analysis of thin laminated plates resting on non-linear elastic foundations is investigated. Winkler-Pasternak type foundation model is used. Governing equations of motions are obtained using the von Karman type nonlinear theory. The method of discrete singular convolution is used to obtain the discretised equations of motion of plates. The effects of plate geometry, boundary conditions, material properties and foundation parameters on nonlinear vibration behavior of plates are presented.

Vibration of angle-ply laminated composite circular and annular plates

  • Mercan, Kadir;Ebrahimi, Farzad;Civalek, Omer
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.141-154
    • /
    • 2020
  • In the present paper, free vibration analysis of angle-ply laminated composite annular and circular plates is performed by numerical methods. First-order shear deformation plate theory is used for kinematic relations. The related governing equations of motion are discretized via differential quadrature and discrete singular convolution methods. Frequency values are obtained for different lamina scheme, thickness-to-radius ratio, and mode numbers. The advantages and accuracy of these two methods are also tested in detail.

Free vibration analysis of tapered beam-column with pinned ends embedded in Winkler-Pasternak elastic foundation

  • Civalek, Omer;Ozturk, Baki
    • Geomechanics and Engineering
    • /
    • 제2권1호
    • /
    • pp.45-56
    • /
    • 2010
  • The current study presents a mathematical model and numerical method for free vibration of tapered piles embedded in two-parameter elastic foundations. The method of Discrete Singular Convolution (DSC) is used for numerical simulation. Bernoulli-Euler beam theory is considered. Various numerical applications demonstrate the validity and applicability of the proposed method for free vibration analysis. The results prove that the proposed method is quite easy to implement, accurate and highly efficient for free vibration analysis of tapered beam-columns embedded in Winkler- Pasternak elastic foundations.

DISCRETE VOLTERRA EQUATIONS IN WEIGHTED SPACES

  • Goo, Yoon Hoe;Im, Dong Man
    • 충청수학회지
    • /
    • 제20권3호
    • /
    • pp.321-325
    • /
    • 2007
  • We prove the Medina's results about the existence and uniqueness of solutions of discrete Volterra equations of convolution type in weighted spaces, by using the well-known Contraction Mapping Principle.

  • PDF

REAL SEQUENCE의 CYCLIC CONVOLUTION을 이용한 FET와 FHT의 비교에 관한 연구 (A STUDY ON COMPARISION OF THE FFT AND FHT CYCLIC CONVOLUTION OF REAL SEQUENCE)

  • 성상기;김진탁;김수일;이진이;양승인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 전기.전자공학 학술대회 논문집(II)
    • /
    • pp.1188-1190
    • /
    • 1987
  • Recently, new fast transform (such as discrete Hartley Transform) have been proposed which are best suited for the computation of real sequence. Two approaches using Fourier or Hartley transform are first compared. This paper is treated real sequence, compared number of addition of cyclic convolution with using the FFT and FHT the convolution technique is defined as a separating system impulse response to the given input and output of the system.

  • PDF

Numerical approaches for vibration response of annular and circular composite plates

  • Baltacioglu, Ali Kemal;Civalek, Omer
    • Steel and Composite Structures
    • /
    • 제29권6호
    • /
    • pp.759-770
    • /
    • 2018
  • In the present investigation, by using the two numerical methods, free vibration analysis of laminated annular and annular sector plates have been studied. In order to obtain the main equations two different shell theories such as Love's shell theory and first-order shear deformation theory (FSDT) have been used for modeling. After obtaining the fundamental equations in briefly, the methods of harmonic differential quadrature (HDQ) and discrete singular convolution (DSC) are used to solve the equation of motion. Accuracy, convergence and reliability of the present HDQ and DSC methods were tested by comparing the existing results obtained by different methods in the literature. The effects of some geometric and material properties of the plates are investigated via these two methods. The advantages and accuracy of the HDQ and DSC methods have also been examined with different grid numbers and shell theory. Some results for laminated annular plates and laminated circular plates were also been supplied.

A new discrete-time robot model and its validity test

  • Lai, Ru;Ohkawa, Fujio;Jin, Chunzhi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.807-810
    • /
    • 1997
  • Digital control of robot manipulator employs discrete-time robot models. It is important to explore effective discrete-time robot models and to analyze their properties in control system designs. This paper presents a new type discrete-time robot model. The model is derived by using trapezoid rule to approximate the convolution integral term, then eliminating nonlinear force terms from robot dynamical equations. The new model obtained has very simple structure, and owns the properties of independence to the nonlinear force terms. According to evaluation criteria, three aspects of the model properties: model accuracy, model validity range and model simplicity are examined and compared with commonly used discrete-time robot models. The validity of the proposed model and its advantages to control system designs are verified by simulation results.

  • PDF

Debye 매질에 대한 메모리 효율적인 JEC (FD)2TD 수치 해석 기법 (Memory-Efficiently Modified JEC (FD)2TD Method for Debye Medium)

  • 김현;홍익표;육종관
    • 한국전자파학회논문지
    • /
    • 제16권5호
    • /
    • pp.447-454
    • /
    • 2005
  • Debye 매질에 대한 $(FD)^2TD$ 해석에 있어 JEC(JE Convolution) 기법은 기존의 기법들보다 적은 분산 오차를 가지지만 긴 계산 시간과 추가의 메모리를 필요로 하는 단점을 지닌다. 따라서 본 논문에서는 컨볼루션의 이산적분 구간을 변경해 줌으로써 유도되는 수정된 JEC 기법을 제안하였고 그 결과 기존의 RC(Recursive Convolution)나 JEC 기법보다 적은 분산 오차를 보이는 것을 확인할 수 있었다 또한 수정된 JEC 기법 이 기존 기법들 중 가장 간단한 RC 기법과 같은 계산 복잡도와 메모리량을 요구하면서도 그보다 적은 분산 오차를 보인다는 것을 확인하였다.