• 제목/요약/키워드: discrete Kirchhoff shell element

검색결과 3건 처리시간 0.015초

계층적 접촉 탐색방법을 이용한 박판성형 공정해석 (Sheet Forming Anlysis by Using Hierarchical Contact Searching Method)

  • 김일권;김용한
    • 소성∙가공
    • /
    • 제9권3호
    • /
    • pp.274-283
    • /
    • 2000
  • A dynamic explicit finite element code for simulating sheet forming processes has been developed. The code utilizes the discrete Kirchhoff shell element and contact force is treated by a conventional penalty method. In order to reduce the computational cost, a new and robust contact searching algorithm has been developed and implemented into the code. In the method, a hierarchical structure of tool segments is built for each tool at the initial stage of the analysis. hierarchical structure is built in a way to divide a box to 8 sub-boxes, 2 in each direction, until the lowest level of the hierarchical structure contains exactly one segment of the tool or empty. Then at each time step, contact is checked from the box to sub-boxes hierarchically for each node. Comparisons of computational results of various examples with the existing ones show the validity of the method.

  • PDF

박판성형공정해석에서의 계층적 접촉탐색 알고리즘 적용 (A Hierarchical Contact Searching Algorithm in Sheet Forming Analysis)

  • 김용환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.22-25
    • /
    • 1999
  • A dynamic explicit finite element code for simulating sheet forming processes has been developed The code utilises the discrete Kirchhoff shell element and contact force is treated by a conventional penalty method. In order to reduce the computational cost a new and robust contact searching algorithm has been developed and implemented into the code. in the method a hierarchical structure of tool segments called a tree structure is built for each tool at the initial stage of the analysis Tree is built in a way to divide a trunk to 8 sub-trunk 2 in each direction until the lowest level of the tree(leaf) contains exactly one segment of the tool. In order to have a well-balanced tree each box on each sub level contains one eighth of the segments. Then at each time step contact line from a node comes out of the surface of the tool. Simulation of various sheet forming processes were performed to verify the validity of the developed code with main focus on he usefulness of the developed contact searching algorithm.

  • PDF

The new flat shell element DKMGQ-CR in linear and geometric nonlinear analysis

  • Zuohua Li;Jiafei Ning;Qingfei Shan;Hui Pan;Qitao Yang;Jun Teng
    • Computers and Concrete
    • /
    • 제31권3호
    • /
    • pp.223-239
    • /
    • 2023
  • Geometric nonlinear performance simulation and analysis of complex modern buildings and industrial products require high-performance shell elements. Balancing multiple aspects of performance in the one geometric nonlinear analysis element remains challenging. We present a new shell element, flat shell DKMGQ-CR (Co-rotational Discrete Kirchhoff-Mindlin Generalized Conforming Quadrilateral), for linear and geometric nonlinear analysis of both thick and thin shells. The DKMGQ-CR shell element was developed by combining the advantages of high-performance membrane and plate elements in a unified coordinate system and introducing the co-rotational formulation to adapt to large deformation analysis. The effectiveness of linear and geometric nonlinear analysis by DKMGQ-CR is verified through the tests of several classical numerical benchmarks. The computational results show that the proposed new element adapts to mesh distortion and effectively alleviates shear and membrane locking problems in linear and geometric nonlinear analysis. Furthermore, the DKMGQ-CR demonstrates high performance in analyzing thick and thin shells. The proposed element DKMGQ-CR is expected to provide an accurate, efficient, and convenient tool for the geometric nonlinear analysis of shells.