As the development of database technology for managing spatiotemporal data, new types of spatiotemporal application services that need the spatiotemporal knowledge discovery from the large volume of spatiotemporal data are emerging. In this paper, a new 3-layered discovery framework for the development of spatiotemporal knowledge discovery techniques is proposed. The framework supports the foundation model in order not only to define spatiotemporal knowledge discovery problem but also to represent the definition of spatiotemporal knowledge and their relationships. Also the components of spatiotemporal knowledge discovery system and its implementation model are proposed. The discovery framework proposed in this paper satisfies the requirement of the development of new types of spatiotemporal knowledge discovery techniques. The proposed framework can support the representation model of each element and relationships between objects of the spatiotemporal data set, information and knowledge. Hence in designing of the new types of knowledge discovery such as spatiotemporal moving pattern, the proposed framework can not only formalize but also simplify the discovery problems.
With the explosive increase in the generation and utilization of spatiotemporal data sets, many research efforts have been focused on the efficient handling of the large volume of spatiotemporal sets. With the remarkable growth of ubiquitous computing technology, mining from the huge volume of spatiotemporal data sets is regarded as a core technology which can provide real world applications with intelligence. In this paper, we propose a 3-tier knowledge discovery framework for spatiotemporal data mining. This framework provides a foundation model not only to define the problem of spatiotemporal knowledge discovery but also to represent new knowledge and its relationships. Using the proposed knowledge discovery framework, we can easily formalize spatiotemporal data mining problems. The representation model is very useful in modeling the basic elements and the relationships between the objects in spatiotemporal data sets, information and knowledge.
Proceedings of the Korea Inteligent Information System Society Conference
/
2001.01a
/
pp.435-440
/
2001
The development of web-aware knowledge discovery system has received a great deal of attention in recent years. It plays a key-enabling role for competitive businesses in the E-commerce era. One of the challenges in developing web-aware knowledge discovery systems is to integrate and coordinate and coordinate existing standalone or legacy knowledge discovery applications in a seamless manner, so that cost-effective systems can be developed without the need of costly proprietary products. In this paper, we present an approach for developing a framework of web-aware interoperable knowledge discovery system to achieve this purpose. This approach applies RMI and high-level code wrapper of Java distributed object computing to address the issues of interoperability in heterogeneous environments, which includes programming language, platform, and visual object model. The effectiveness of the proposed framework is demonstrated through the integration and extension of the two well-known standalone knowledge discovery tools, SOM_PAK and Nenet. It confirms that a variety of interoperable knowledge discovery systems can be constructed efficiently on the basis of the framework to meet various requirements of knowledge discovery tasks.
In this paper, we propose a new type of process discovery framework, which is named as control-path-driven process group discovery framework, to be used for process mining and process reengineering in supporting life-cycle management of business process models. In addition, we develop a process mining system based on the proposed framework and perform experimental verification through it. The process execution event logs applied to the experimental effectiveness and verification are specially defined as Process BIG-Logs, and we use it as the input datasets for the proposed discovery framework. As an eventual goal of this paper, we design and implement a control path-driven process group discovery algorithm and framework that is improved from the ρ-algorithm, and we try to verify the functional correctness of the proposed algorithm and framework by using the implemented system with a BIG-Log dataset. Note that all the process mining algorithm, framework, and system developed in this paper are based on the structural information control net process modeling methodology.
In this paper, we propose the SINDI-Grid which is a high-performance framework for scientific and technological knowledge discovery using the grid computing. By using the advantages of the grid computing providing data repository of large-volume and high-speed computing power, the SINDI-Grid framework provides a variety of grid services for distributed data analysis and scientific knowledge processing. And the SINDI-Workflow tool exploits these services so that performs the design and execution for scientific and technological knowledge discovery applications which integrate various information processing algorithms.
The creation of knowledge is a major concern for knowledge management practice. In particular, effective knowledge creation is one of the critical success factor in SI(System Integration) industry. This paper designs a framework of effective knowledge creation methods for organizations in SI industry. First, we give a comprehensive survey on knowledge creation and discovery methods. And the structure of SI knowledge has been analysed. Also, characteristics of knowledge management processes of SI industry have been surveyed and analysed. A framework for effective knowledge creation of SI organization has been discussed based on the characteristics of SI knowledge and knowledge management processes. Organizational issues and theoretical issues of the methods have been discussed. Future research will be needed to expand the current framework and to examine the effectiveness of the proposed framework.
Kim, Yeongdae;Lee, Won Suk;Jang, Sang-hyun;Shin, Yongtae
Journal of Information Technology Services
/
v.20
no.3
/
pp.41-56
/
2021
New drug discovery and development research enable clinical treatment that saves human life and improves the quality of life, but the possibility of success with new drugs is significantly low despite a long time of 14 to 16 years and a large investment of 2 to 3 trillion won in traditional methods. As artificial intelligence is expected to radically change the new drug development paradigm, artificial intelligence new drug discovery and development projects are underway in various forms of collaboration, such as joint research between global pharmaceutical companies and IT companies, and government-private consortiums. This study uses the TOE framework and the Value-based Adoption Model, and the technical, organizational, and environmental factors that should be considered for the acceptance of AI technology at the level of the new drug research organization are the value of artificial intelligence technology. By analyzing the explanatory power of the relationship between perception and intention to use, it is intended to derive practical implications. Therefore, in this work, we present a research model in which technical, organizational, and environmental factors affecting the introduction of artificial intelligence technologies are mediated by strategic value recognition that takes into account all factors of benefit and sacrifice. Empirical analysis shows that usefulness, technicality, and innovativeness have significantly affected the perceived value of AI drug development systems, and that social influence and technology support infrastructure have significant impact on AI Drug Discovery and Development systems.
Proceedings of the Korea Database Society Conference
/
1999.06a
/
pp.125-133
/
1999
The objective of knowledge discovery and data mining lies in the generation of useful insights from a store of data. This paper presents a framework for knowledge mining to provide a systematic approach to the selection and deployment of tools for automated learning. Every methodology has its strengths and limitations. Consequently, a multistrategy approach may be required to take advantage of the strengths of disparate technique while circumventing their individual limitations. For concreteness, the general framework for data mining in marketing is examined in the context of developing agents for optimizing a supply chain network.
Proceedings of the Korea Inteligent Information System Society Conference
/
1999.03a
/
pp.125-133
/
1999
The objective of knowledge discovery and data mining lies in the generation of useful insights from a store of data. This paper presents a framework for knowledge mining to provide a systematic approach to the selection and deployment of tools for automated learning. Every methodology has its strengths and limitations. Consequently, a multistrategy approach may be required to take advantage of the strengths of disparate technique while circumventing their individual limitations. For concreteness, the general framework for data mining in marketing is examined in the context of developing agents for optimizing a supply chain network.
Extending from Grossman and Stiglitz (1980), we provide an asset pricing model of a synchronously traded cross-listed pair under information asymmetry. Following Garbade and Silber (1983), the model further embraces multi-market price discovery in a dynamic framework. The implications are as follows: The price sensitivity of holdings is higher for informed traders than for uninformed traders; the largest cross-border price spread occurs in the absence of arbitrageurs; price discovery is more likely in markets with a larger population of informed traders; and parity convergence accelerates with a higher price elasticity of demand of arbitrageurs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.