• Title/Summary/Keyword: discontinuous surface

Search Result 142, Processing Time 0.086 seconds

3D Simulation of Earthquake Ground Motion Using Locally Variable Time-Step Finite-Difference Method

  • Kang, Tae-Seob;Baag, Chang-Eob
    • Proceedings of the International Union of Geodesy And Geophysics Korea Journal of Geophysical Research Conference
    • /
    • 2003.05a
    • /
    • pp.18-18
    • /
    • 2003
  • Three-dimensional finite-difference simulation of earthquake ground motion is performed using a locally variable time-step (LVTS) scheme matching with discontinuous grids. Discontinuous grids in three directions and extension of the discontinuous grids' boundary to the free-surface in the LVTS scheme minimize the cost of both the computational memory and the CPU time for models like the localized sedimentary basin. A simplified model of sedimentary basin is dealt to show the feasibility and efficiency of the LVTS scheme. The basin parameters are examined to understand the main characteristics on ground-motion response in the basin. The results show that the seismic energy is concentrated on a marginal area of the basin far from the source. This focusing effect is mainly due to the constructive interference of the direct S-wave with the basin-edge induced surface waves. The ground-motion amplification over the deepest part of the basin is relatively lower than that above the shallow basin edge. Therefore the ground-motion amplification may be more related to the source azimuth or the direction of the incident waves into the basin rather than the depth of it.

  • PDF

A Continuous Sliding Surface Transformed VSS by Saturation Function for MIMO Uncertain Linear Plants (다입출력 불확실 선형 플랜트를 위한 포화함수에 의한 연속 슬라이딩 면 변환 가변구조시스템)

  • Lee, Jung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.127-134
    • /
    • 2015
  • In this note, a continuous sliding surface transformed variable structure systems by the saturation function is presented for MIMO uncertain linear plants. A discontinuous sliding surface transformed VSS is proposed theoretically. The closed loop exponential stability together with the MIMO existence condition of the sliding mode on the predetermined sliding surface is investigated. For practical applications, a continuous approximation of the discontinuous VSS is made by means of the saturation function. The discontinuity of the control input as the inherent property of the VSS is much improved in view of the practical aspects. Through a design example and simulation studies, the usefulness of the proposed continuous transformed VSS controller is verified.

Seismic Behavior Characteristics of Stone Pagoda According to Contact Surface Types (접촉면 처리 방식에 따른 석탑의 내진 특성 평가)

  • Kim, Ho-Soo;Kim, Dong-Kwan;Won, Tae-Ho;Jeon, Geon-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.41-50
    • /
    • 2019
  • The stone pagoda continued to be damaged by weathering and corrosion over time, and natural disasters such as earthquake are accelerating the destruction of cultural properties. Stone pagoda has discontinuous structure behavior and is very vulnerable to the seismic load acting in lateral direction. It is necessary to analyze various design variables as the contact surface characteristics play an important role in the dynamic behavior of stone pagodas. For this purpose, contact surface characteristics of stone pagoda can be classified according to surface roughness and filler type, and representative model is selected and structural modeling and analysis are performed using the discrete element method. Also, the seismic load according to the repetition period is calculated and the dynamic analysis is performed considering the discontinuous characteristics of the stone pagoda. Finally, the seismic behavior characteristics can be analyzed by the evaluation of stresses, displacements and structural safety.

Modeling the Water-Block Interaction with Discontinuous Deformation Analysis Method (불연속 변형 해석법에 의한 지하수-암반블록 상호작용 모델링)

  • 김용일
    • Tunnel and Underground Space
    • /
    • v.9 no.2
    • /
    • pp.149-157
    • /
    • 1999
  • A powerful numerical method that can be used for that purpose is the Discontinuous Deformation Analysis (DDA) method developed by Shi in 1988. In this method, rock masses are treated as systems of finite and deformable blocks. Large rock mass deformations and block movements are allowed. Although various extensions of the DDA method have been proposed in the literature, the method is not capable of modeling water-block interaction that is needed when modeling surface or underground excavation in fractured rock. This paper presents a new extension to the DDA method. The extension consists of hydro-mechanical coupling between rock blocks and water flow in fractures. A example of application of the DDA method with the new extension is presented. The results of the present study indicate that fracture flow could have a destabilizing effect on the tunnel stability.

  • PDF

Discontinuous finite-element quadrature sets based on icosahedron for the discrete ordinates method

  • Dai, Ni;Zhang, Bin;Chen, Yixue
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1137-1147
    • /
    • 2020
  • The discrete ordinates method (SN) is one of the major shielding calculation method, which is suitable for solving deep-penetration transport problems. Our objective is to explore the available quadrature sets and to improve the accuracy in shielding problems involving strong anisotropy. The linear discontinuous finite-element (LDFE) quadrature sets based on the icosahedron (in short, ICLDFE quadrature sets) are developed by defining projected points on the surfaces of the icosahedron. Weights are then introduced in the integration of the discontinuous finite-element basis functions in the relevant angular regions. The multivariate secant method is used to optimize the discrete directions and their corresponding weights. The numerical integration of polynomials in the direction cosines and the Kobayashi benchmark are used to analyze and verify the properties of these new quadrature sets. Results show that the ICLDFE quadrature sets can exactly integrate the zero-order and first-order of the spherical harmonic functions over one-twentieth of the spherical surface. As for the Kobayashi benchmark problem, the maximum relative error between the fifth-order ICLDFE quadrature sets and references is only -0.55%. The ICLDFE quadrature sets provide better integration precision of the spherical harmonic functions in local discrete angle domains and higher accuracy for simple shielding problems.

Examination of analytical and finite element solutions regarding contact of a functionally graded layer

  • Yaylaci, Murat;Adiyaman, Gokhan;Oner, Erdal;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.325-336
    • /
    • 2020
  • In this study, the continuous and discontinuous contact problems of functionally graded (FG) layer resting on a rigid foundation were considered. The top of the FG layer was loaded by a distributed load. It was assumed that the shear modulus and the density of the layer varied according to exponential functions along the depth whereas the the Poisson ratio remained constant. The problem first was solved analytically and the results were verified with the ones obtained from finite element (FE) solution. In analytical solution, the stress and displacement components for FG layer were obtained by the help of Fourier integral transform. Critical load expression and integral equation for continuous and discontinuous contact, respectively, using corresponding boundary conditions in each case. The finite element solution of the problem was carried out using ANSYS software program. In continuous contact case, initial separation distance and contact stresses along the contact surface between the FG layer and the rigid foundation were examined. Separation distances and contact stresses were obtained in case of discontinuous contact. The effect of material properties and loading were investigated using both analytical and FE solutions. It was shown that obtained results were compatible with each other.

Design of Controller for Nonlinear Multivariable System Using Dynamic Neural Unit (동적신경망을 이용한 비선형 다변수 시스템의 제어기 설계)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1178-1183
    • /
    • 2008
  • The variable structure control(VSC) with sliding mode is an important and interesting topic in modern control of nonlinear systems. However, the discontinuous control law in VSC leads to undesirable chattering in practice. As a method solving this problem, in this paper, we propose a scheme of the VSC with neural network sliding surface. A neural network sliding surface with boundary layer is employed to solve discontinuous control law. The proposed controller can eliminate the chattering problem of the conventional VSC. The effectiveness of the proposed control scheme is verified by simulation results.

Effect of Rolling Draughts on the Evolution of Through-Thickness Textures in Aluminum 5000X Sheet (알루미늄 5000계 판재에서 두께 층에 따른 집합조직 형성에 미치는 압연 패스당 변형률의 영향에 관한 연구)

  • 김현철;김용희;허무영
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.193-202
    • /
    • 2000
  • The influence of rolling draughts on the formation of through-thickness textures in aluminum 5000X sheet was investigated by X-ray texture measurements and microstructure observations. In order to intensify the deformation inhomogeneities, cold rolling was performed without lubrication. Applying a large draught gave rise to the formation of the shear texture at the surface, whereas a normal plane strain testure formed at the surface after deformation with a small draught. The orientation density along the $\beta$-fiber orientations which developed in the center layer of the rolled specimen was also dependent on the strain gradients in a roll gap. Upon annealing, the deformed substructure of sample surfaces was transformed into a fine grained recrystallized microsturcture through extended recovery reaction. However, coarse grains developed after the discontinuous recrystallization which gave rise to the development of the Cube-texture.

  • PDF

DEVELOPMENT OF A NUMERICAL TECHNIQUE FOR CAPILLARY SPREADING OF A DROPLET CONTAINING PARTICLES ON THE SOLID SUBSTRATE (미세입자분산 액적의 고체면에서 모세퍼짐 현상에 관한 직접수치해석 기법개발)

  • Hwang, Wook-Ryol;Jeong, Hyun-Jun;Kim, See-Jo;Kim, Chong-Youp
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.14-19
    • /
    • 2007
  • We present a direct numerical simulation technique and some preliminary results of the capillary spreading of a droplet containing particles on the solid substrate. We used the level-set method with the continuous surface stress for description of droplet spreading with interfacial tension and employed the discontinuous Galerkin method for the stabilization of the interface advection equation. The distributed Lagrangian-multipliers method has been combined for the implicit treatment of rigid particles. We investigated the droplet spreading by the capillary force and discussed effects of the presence of particles on the spreading behavior. It has been observed that a particulate drop spreads less than the pure liquid drop. The amount of spread of a particulate drop has been found smaller than that of the liquid with effectively the same viscosity as the particulate drop.

이동 슬라이딩 서피스를 이용한 로봇의 빠른 추적제어

  • 최승복;정재천;박동원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.164-168
    • /
    • 2001
  • In this paper, we introduce a new sliding surface adaptable to arbitrary initial conditions. The surface is initially designed to pass given intial errors and subsequently moves towards a predetermined surface via rotating or/and shifting. We call it as a moving sliding surface (MSS) comparing with the conventional ones, for instances, employed by Slotine and Sastry. Using the MSS, it is shown that the tracking is much faster than conventional one without increasing the magnitude of discontinuous control gain. To demonstrate some advantages of the proposed method, we apply the MSS to the path tracking control of a two-degree-of-freedom robotic manipulator subjected to external disturbances.