• 제목/요약/키워드: disaster detection

검색결과 394건 처리시간 0.022초

IoT 기반 유해 가스 환경 제어 시스템 개발 (Development of IoT-based Hazardous Gas Environment Control System )

  • 김철훈;류대현;최태완
    • 한국전자통신학회논문지
    • /
    • 제19권5호
    • /
    • pp.1013-1018
    • /
    • 2024
  • 본 연구에서는 산업 현장에서의 유해 가스로 인한 재해를 예방하기 위해 IoT(Internet of Things) 기술을 활용한 실시간 모니터링 시스템을 개발하고 그 성능을 평가하였다. 개발된 시스템은 유해 가스를 실시간으로 감지하고 신속한 경보를 발령하여 98% 이상의 데이터 정확도와 3초 미만의 반응 시간을 달성하였다. 시스템은 센서 노드, 중앙 처리 장치, 사용자 인터페이스로 구성되며, 클라우드 기반 원격 감시 및 관제 프로그램을 통해 작업 환경과 작업자 상태를 실시간으로 모니터링한다. 본 연구는 산업 현장의 안전 관리를 효과적으로 수행할 수 있는 새로운 접근 방식을 제시하였으며, 향후 다중 가스 감지 기능의 개선, AI 기반의 예측 모델 개발, 보안 강화 등을 통해 더욱 발전된 모니터링 시스템으로 진화할 것으로 기대된다.

2019 강릉-동해 산불 피해 지역에 대한 PlanetScope 영상을 이용한 지형 정규화 기법 분석 (Analysis on Topographic Normalization Methods for 2019 Gangneung-East Sea Wildfire Area Using PlanetScope Imagery)

  • 정민경;김용일
    • 대한원격탐사학회지
    • /
    • 제36권2_1호
    • /
    • pp.179-197
    • /
    • 2020
  • 지형 정규화 기법은 영상 촬영 시의 광원, 센서 및 지표면 특성에 따라 발생하는 밝기값 상의 지형적인 영향을 제거하는 방법으로, 지형 조건으로 인해 동일 피복의 픽셀들이 서로 다른 밝기값을 지닐 때 그 차이를 감소시킴으로써 평면 상의 밝기값과 같아 보이도록 보정한다. 이러한 지형적인 영향은 일반적으로 산악 지형에서 크게 나타나며, 이에 따라 산불 피해 지역 추정과 같은 산악 지형에 대한 영상 활용에서는 지형 정규화 기법이 필수적으로 고려되어야 한다. 그러나 대부분의 선행연구에서는 중저해상도의 위성영상에 대한 지형 보정 성능 및 분류 정확도 영향 분석을 수행함으로써, 고해상도 다시기 영상을 이용한 지형 정규화 기법 분석은 충분히 다루어지지 않았다. 이에 본 연구에서는 PlanetScope 영상을 이용하여 신속하고 정확한 국내 산불 피해 지역 탐지를 위한 각 밴드별 최적의 지형 정규화 기법 평가 및 선별을 수행하였다. PlanetScope 영상은 3 m 공간 해상도의 전세계 일일 위성영상을 제공한다는 점에서 신속한 영상 수급 및 영상 처리가 요구되는 재난 피해 평가 분야에 높은 활용 가능성을 지닌다. 지형 정규화 기법 비교를 위해 보편적으로 이용되고 있는 7가지 기법을 구현하였으며, 토지 피복 구성이 상이한 산불 전후 영상에 모두 적용, 분석함으로써 종합적인 피해 평가에 활용될 수 있는 밴드 별 최적 기법 조합을 제안하였다. 제안된 방법을 통해 계산된 식생 지수를 이용하여 화재 피해 지역 변화 탐지를 수행하였으며, 객체 기반 및 픽셀 기반 방법 모두에서 향상된 탐지 정확도를 나타내었다. 또한, 화재 피해 심각도(burn severity) 매핑을 통해 지형 정규화 기법이 연속적인 밝기값 분포에 미치는 효과를 확인하였다.

CdS 센서를 이용한 액정 광변조 X-선 검출 시스템 개발 (Development of Liquid Crystal Optic Modulation Based X-ray Dosimeter by Using CdS Sensor)

  • 노시철;강상식;정봉재;최일홍;김현희;조창훈;박준홍;박지군
    • 한국방사선학회논문지
    • /
    • 제5권6호
    • /
    • pp.357-361
    • /
    • 2011
  • 본 연구에서는 II-IV 족 화합물 반도체인 CdS를 이용한 액정광변조 방식의 X-ray 검출 시스템을 제안하였다. 제안된 시스템은 검출부, 신호처리부, 액정 구동 및 투과량 측정부, 마이크로컨트롤러부, 입출력부로 구성되었으며, 소형화 및 휴대형에 적합하게 제작되었다. 또한, 검출 범위 선택을 통하여 광범위한 조건에서 측정이 가능하도록 구성하였다. 제안된 시스템의 성능을 평가하기 위하여 조사선량 변화에 따른 CdS 센서의 출력 특성을 확인하였으며, 우수한 상관관계를 확인할 수 있었다. 또한, 인가전압에 따른 액정의 변화를 관찰하여 인가 전압에 따른 광투과율을 측정하였으며, 높은 상관관계와 우수한 재현성을 확인할 수 있었다. 이러한 결과를 통하여 본 연구에서 제안된 액정 광변조 방식의 특징인 우수한 재현성과 노이즈 내성 특성을 확인할 수 있었으며, 본 연구를 통하여 제안된 CdS 셀 기반 광변조 방식의 휴대형 X선 검출 시스템이 소형, 저가형, 휴대형 시스템으로 적용이 가능할 것으로 판단되었다.

무인항공기(UAV)의 공간정보 통합운영을 위한 국내적용 방안 (A Study on Application of the UAV in Korea for Integrated Operation with Spatial Information)

  • 윤부열;이재원
    • 대한공간정보학회지
    • /
    • 제22권2호
    • /
    • pp.3-9
    • /
    • 2014
  • 현재 무인항공기(UAV)는 유인 항공기가 수행하기 어려운 장시간 정찰, 위험지역의 자원탐지, 재난 재해, 방송 통신, 신속한 변화탐지 및 공간정보 구축 등이 가능해짐에 따라 과거 단순한 군작전용에서 벗어나지 못했던 국제적 인식이 변화되고 그 수요가 군수용 및 민간용에서 모두 증가되고 있다. 뿐만 아니라 최근 우리나라에서도 공간정보 분야에서 활용도가 다양해지고 그 활동영역도 넓어지는 시점에서 기존의 항공사진측량을 보완하는 목적으로 유인항공기와 무인항공기의 통합적인 역할을 조심스럽게 거론되고 있다. 특히 재난 재해, 소규모 지역의 공간정보 자료취득 등의 신속한 공간정보의 자료구축으로 빠른 의사결정이 필요한 분야에 적용이 절실한 상황이다. 하지만 무인항공기에 대한 기술적 안정성과 공간정보 관련 기술적, 법 제도적 규정이 검토되지 않고 항공사진측량과 통합운영 되지 못하고 있어 무인항공기의 한계성이 절실히 나타나고 있다. 따라서 본 연구에서는 기존항공사진측량의 단점을 보완하는 목적으로 무인항공기를 이용한 공간정보 자료구축에 통합 운영을 위하여 무인항공기를 이용한 공간정보자료구축에 대한 기술적, 법 제도적 규정 및 동향을 분석하여 통합운영에 대한 가능성을 제시하고자 한다.

전국 도시·산지·소하천 돌발홍수예측 시스템 개발 및 정확도 평가 (Development of flood forecasting system on city·mountains·small river area in Korea and assessment of forecast accuracy)

  • 황석환;윤정수;강나래;이동률
    • 한국수자원학회논문집
    • /
    • 제53권3호
    • /
    • pp.225-236
    • /
    • 2020
  • 유역 상류의 소규모 산지 유역 또는 도시 배수분구 정도의 도시 유역은 지체시간이 수 십 여분에 불과하기 때문에 우량계만으로는 대응에 필요한 충분한 예측 선행시간을 확보하기 어렵다. 도시 및 소규모 산지 유역에서와 같이 지체시간이 짧은 유역에서 발생하는 돌발홍수는 더 이상 우량계만으로 예보가 불가능하다. 도달시간이 짧은 도시 및 산지에서는 지체시간 외에 강수 예측을 통한 홍수예보 선행시간을 확보하는 것이 매우 중요하다. 한강홍수통제소에서는 강우레이더 강우강도를 초단기 예측 모델인 Mcgill Algorithm for Precipitation-nowcast by Lagrangian Extrapolation(MAPLE) 알고리즘의 입력 자료로 활용하여 초단기 예측 강수 자료를 생산하고 있다. 한국건설기술연구원의 돌발홍수연구센터는 한강홍수통제소에서 생산하고 있는 초단기 예측 강수 자료를 입력 자료로 하여 돌발홍수 예측 시스템을 구축하였고 2019년부터 동네규모의 1시간 전 돌발홍수정보를 제공하고 있다. 본 연구에서는 돌발홍수연구센터에서 구축한 돌발홍수 예측 시스템을 설명하고 2019년도에 발생한 수재해 사례를 분석하여 전국 도시·산지·소하천 돌발홍수 예측 시스템의 예측 정확도를 검증하였다. 돌발홍수 예측 시스템의 정확도 검증에는 총 31개의 수재해 사례를 적용하였고 예측 정확도는 Probability of Detection (POD) 기준으로 90.3%로 매우 높게 나타났다.

인공지능 기반의 GEMS 산불연기 및 황사 탐지 (Artificial Intelligence-Based Detection of Smoke Plume and Yellow Dust from GEMS Images)

  • 정예민;윤유정;김서연;강종구;최소연;임윤교;서영민;유정아;성경희;김상민;이양원
    • 대한원격탐사학회지
    • /
    • 제39권5_2호
    • /
    • pp.859-873
    • /
    • 2023
  • 산불은 오랜 기간동안 사회 및 경제적으로 지구에 많은 피해를 야기하며, 이러한 산불은 자연적 혹은 인위적으로 발생되어왔다. 이로 인해 여러 실험들에서 산불로 인한 악영향에 관한 연구들을 진행하였으며, 동시에 산불 발생 시 빠른 대처를 위한 산불탐지 및 오염배출 물질 탐지 등과 같은 연구들도 수행되었다. 그러나 현재까지 한국 및 동아시아 영역을 배경으로 한 연구는 부족한 실정이고 산불 탐지에 활용되는 자료들의 정확도에 한계가 있었다. 본 연구에서는 정지궤도 환경위성(Geostationary Environment Monitoring Spectrometer, GEMS) 영상에 위색합성기법을 활용해 새로운 산불연기 탐지 산출물을 생성하고 해당 영상을 U-Net 모델링에 활용해 기존의 연구들에서 산불 탐지시에 활용했던 가시광선 채널 영상의 한계를 보완하였다. 그리고 U-Net 모델링을 통해 산출된 산불연기 영역으로부터 황사 픽셀 필터링을 수행하는 분류모델을 구축하여 순수 산불연기 탐지 영상을 산출하였으며, 이는 GEMS 기반의 재난감시에 활용될 수 있을 것으로 기대한다.

YOLOv5 및 다항 회귀 모델을 활용한 사과나무의 착과량 예측 방법 (Estimation of fruit number of apple tree based on YOLOv5 and regression model)

  • 곽희진;정윤주;전익조;이철희
    • 전기전자학회논문지
    • /
    • 제28권2호
    • /
    • pp.150-157
    • /
    • 2024
  • 본 논문은 딥러닝 기반 객체 탐지 모델과 다항 회귀모델을 이용하여 사과나무에 열린 사과의 개수를 예측할 수 있는 새로운 알고리즘을 제안한다. 사과나무에 열린 사과의 개수를 측정하면 사과 생산량을 예측할 수 있고, 농산물 재해 보험금 산정을 위한 손실을 평가하는 데에도 활용할 수 있다. 사과 착과량 측정을 위해 사과나무의 앞면과 뒷면을 촬영하였다. 촬영된 사진에서 사과를 식별하여 라벨링한 데이터 세트를 구축하였고, 이 데이터 세트를 활용하여 1단계 객체 탐지 방식의 CNN 모델을 학습시켰다. 그런데 사과나무에서 사과가 나뭇잎, 가지 등으로 가려진 경우 영상에 포착되지 않아 영상 인식 기반의 딥러닝 모델이 해당 사과를 인식하거나 추론하는 것이 어렵다. 이 문제를 해결하기 위해, 우리는 두 단계로 이루어진 추론 과정을 제안한다. 첫 번째 단계에서는 영상 기반 딥러닝 모델을 사용하여 사과나무의 양쪽에서 촬영한 사진에서 각각의 사과 개수를 측정한다. 두 번째 단계에서는 딥러닝 모델로 측정한 사과 개수의 합을 독립변수로, 사람이 실제로 과수원을 방문하여 카운트한 사과 개수를 종속변수로 설정하여 다항 회귀 분석을 수행한다. 본 논문에서 제안하는 2단계 추론 시스템의 성능 평가 결과, 각 사과나무에서 사과 개수를 측정하는 평균 정확도가 90.98%로 나타났다. 따라서 제안된 방법은 수작업으로 사과의 개수를 측정하는 데 드는 시간과 비용을 크게 절감할 수 있다. 또한, 이 방법은 딥러닝 기반 착과량 예측의 새로운 기반 기술로 관련 분야에서 널리 활용될 수 있을 것이다.

농업용 저수지 모니터링을 위한 다해상도 SAR 영상의 활용 (Multi-resolution SAR Image-based Agricultural Reservoir Monitoring)

  • 이슬찬;정재환;오승철;정하규;최민하
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.497-510
    • /
    • 2022
  • 농업용 저수지는 수자원이 계절적으로 편중된 한반도에서 갈수기 용수 공급을 위한 필수적인 구조물이다. 효율적인 물 관리를 위해서는 중소규모 저수지에 대한 체계적이고 효과적인 모니터링이 필요하며, 합성개구 레이더(Synthetic Aperture Radar, SAR) 영상은 전천후 관측이 가능하다는 특징과 함께 연속적인 저수지 모니터링을 위한 도구가 된다. 본 연구에서는 10 m급 해상도를 갖는 Sentinel-1 SAR 영상과 1 m급 해상도의 Capella X-SAR 영상을 활용하여 울산광역시 차리, 갈전, 뒷골 저수지의 수체를 탐지하였으며, 이를 통해 국내 중소규모 저수지 모니터링에의 활용성을 평가하고자 하였다. Z fuzzy function 기반 임계값 산정을 통한 영상분할기법과 객체 탐지 기반 분할기법인 Chan-vese (CV) 기법을 통해 수체 영역을 산정하였으며, UAV 영상과의 비교를 통해 성능을 정량적으로 평가하였다. 임계값 기반 탐지 정확도는 Sentinel-1의 경우 약 0.87, 0.89, 0.77 (차리, 갈전, 뒷골), Capella의 경우 약 0.78, 0.72, 0.81로 나타났으며, CV 기법 적용 시 모든 저수지에서 정확도가 향상되는 것을 확인하였다(Sentinel-1: 0.94, 0.89, 0.84, Capella: 0.92, 0.89, 0.93). Capella는 모든 저수지/분할기법에 대해 수체와 비수체의 경계를 비교적 뚜렷하게 모의하였으나, 고해상도로 인한 speckle noise가 충분히 평활화되지 않아 오탐지 및 미탐지가 다소 발생하였다. 오탐지의 제거를 위해 광학 센서 기반 보조자료를 활용하여 마스킹한 결과, 정확도가 최대 13% 향상되는 것을 확인할 수 있었다. 본 연구 결과를 바탕으로 SAR 위성 기반 더욱 정확한 저수지 탐지가 이루어진다면 소규모 저수지를 포함, 종합적인 가용수량에 대한 연속적인 모니터링이 가능할 것이며, 효과적인 수자원 관리에 기여할 수 있을 것으로 기대된다.

Sentinel-1 SAR 영상과 AI 기법을 이용한 국내 중소규모 농업저수지의 수표면적 산출 (An Artificial Intelligence Approach to Waterbody Detection of the Agricultural Reservoirs in South Korea Using Sentinel-1 SAR Images)

  • 최소연;윤유정;강종구;박강현;김근아;이슬찬;최민하;정하규;이양원
    • 대한원격탐사학회지
    • /
    • 제38권5_3호
    • /
    • pp.925-938
    • /
    • 2022
  • 농업용 저수지는 전국적으로 중요한 수자원으로 기후변화에 따른 가뭄과 같은 이상기후의 영향에 취약한 특성을 가지며 적절한 운영을 위해 강화된 관리가 필요하다. 지속적인 모니터링을 통한 수위 추적(water level tracking)이 필요하지만 현실적인 문제로 현장 실측 및 관측이 어려운 실정이다. 본 연구는 저수지 수표면적을 측정하기 위해 광역 모니터링이 가능한 위성레이더 자료를 이용하여 4가지 AI 모델 간의 수체 탐지 성능에 대해 객관적인 비교를 제시한다. 위성 레이더자료는 Sentinel-1 SAR 이미지를 사용하였으며, 광학영상과 달리 기상환경에 영향을 적게 받기 때문에 장기 모니터링에 적합하다. 드론 이미지, Sentinel-1 SAR 그리고 DSM 데이터를 사용하여 Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), Automated Machine Learning (AutoML)의 4가지 AI 모델을 구축했다. 연구대상 저수지는 총 22개소로 유효저수량이 30만톤 미만의 중소형 저수지이다. 총 45개 이미지가 모델 훈련과 검증에 사용되었으며, 연구 결과 AutoML 모델이 Accuracy=0.92, mIoU=0.81로 다른 3가지 모델에 비해 수체 픽셀 분류에서 0.01-0.03 더 나은 것을 보여주었다. 해당 결과는 SAR 영상으로부터 AutoML을 이용한 중소형 저수지 대상의 수체 분류 기법이 기존의 머신러닝 기법만큼의 성능을 보이는 것을 보여주었고, 학습을 통한 수표면적 분류 기술의 저수지 모니터링에 대한 적용 가능성을 보여주었다.

영상 강화 기법을 통한 부유성 해양오염물질 탐지 기술 적용 가능성 평가: 해수면의 얇은 유막을 대상으로 (Evaluation of Application Possibility for Floating Marine Pollutants Detection Using Image Enhancement Techniques: A Case Study for Thin Oil Film on the Sea Surface)

  • 장소영;박영빈;권재엽;이상헌;김태호
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1353-1369
    • /
    • 2023
  • 해상에서는 재난·재해 사고가 발생했을 시 바람 등에 의한 기상영향과 해류, 조류와 같은 해상영향에 의해 피해 규모가 달라지게 되며, 빠른 현장 파악을 통해 적합한 방제 방안을 세워 피해 규모를 최소화할 의무가 있다. 특히, 해상에 유출되는 오염물질 중 상대적으로 낮은 점도와 표면장력으로 인해 해수면에서 얇은 막으로 존재하는 오염물질은 육안으로 식별하기 어렵다. 따라서 본 연구에서는 현장에서 쉽게 활용 가능한 촬영장비를 활용하여 RGB 이미지에서 해수면의 부유성 오염물질을 탐지하는 알고리즘을 개발하고, 실 해역에서 획득된 입력자료를 활용하여 알고리즘의 성능을 평가하고자 한다. 개발된 알고리즘은 영상 강화 기법을 활용하여 오염물질과 일반 해수면의 강도값 대비를 향상시키고, 히스토그램(Histogram) 분석을 통해 배경 임계값을 찾아 오염물질 이외의 부유물질을 제거하여 최종적으로 오염물질을 분류한다. 본 연구에서는 개발된 알고리즘의 성능평가를 위해서 대체물질을 이용한 실 해역 테스트를 수행하였으며, 대부분의 부유성 해양오염물질은 탐지되었으나 파도가 강한 곳에서는 오탐지 영역이 발생하였다. 그러나 기존 알고리즘에서 단일 임계값을 사용한 탐지 방법보다 약 3배 이상의 개선된 탐지 결과를 보여준다. 본 연구개발 결과를 통해 기존 현장에서 육안으로 식별이 어려웠던 부유성 해양오염물질을 탐지함으로써 현장에서의 방제 대응 활동에 유용하게 사용될 것으로 기대된다.