• Title/Summary/Keyword: directivity

Search Result 606, Processing Time 0.035 seconds

Seismic responses of asymmetric steel structures isolated with the TCFP subjected to mathematical near-fault pulse models

  • Tajammolian, H.;Khoshnoudian, F.;Bokaeian, V.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.931-953
    • /
    • 2016
  • In this paper, the effects of mass eccentricity of superstructure as well as stiffness eccentricity of isolators on the amplification of seismic responses of base-isolated structures are investigated by using mathematical near-fault pulse models. Superstructures with 3, 6 and 9 stories and aspect ratios equal to 1, 2 and 3 are mounted on a reasonable variety of Triple Concave Friction Pendulum (TCFP) bearings considering different period and damping ratio. Three-dimensional linear superstructure mounted on nonlinear isolators are subjected to simplified pulses including fling step and forward directivity while various pulse period ($T_p$) and Peak Ground Velocity (PGV) amounts as two crucial parameters of these pulses are scrutinized. Maximum isolator displacement and base shear as well as peak superstructure acceleration and drift are selected as the main engineering demand parameters. The results indicate that the torsional intensification of different demand parameters caused by superstructure mass eccentricity is more significant than isolator stiffness eccentricity. The torsion due to mass eccentricity has intensified the base shear of asymmetric 6-story model 2.55 times comparing to symmetric one. In similar circumstances, the isolator displacement and roof acceleration are increased 49 and 116 percent respectively in the presence of mass eccentricity. Furthermore, it is demonstrated that torsional effects of mass eccentricity can force the drift to reach the allowable limit of ASCE 7 standard in the presence of forward directivity pulses.

An Experimental Study on the Characteristics of the Impulsive Wave Discharged from the Open End of a Bend Pipe (곡관출구로부터 방출되는 펄스파의 특성에 관한 실험적 연구)

  • 이동훈;김희동;뢰척구준명
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.9
    • /
    • pp.406-413
    • /
    • 2001
  • The current study depicts and experimental work of the impulsive wave discharged from the exit of several kinds of right-angle bend pipes, which are attached to the open end of a simple shock tube. The weak normal shock wave with Mach number from 1.02 to 1.20 is employed to obtain the impulsive wave propagating outside the exit of the pipe bends. The experimental data of the magnitude of the impulsive wave and its propagation directivity are analyzed to characterize the impulsive waves discharged from the right-angle bend pipes and compared with those from a straight pipe. The impulsive waves are visualized by a Schlieren optical system. A computation work using the two-dimensional, unsteady, compressible Euler equation is also carried out to represent the experimented impulsive waves. The results obtained show that a right-angle miter bend considerably reduces the magnitude of the impulsive wave and its directivity toward to the pipe axis, compared with the straight pipe. It is believed that the right angle miter bend pipe can play a role of passive control agianst the impulsive wave.

  • PDF

Prediction of Thickness and Loading Noise from Aircraft Propeller (항공기용 프로펠러에서의 두께 및 하중소음 예측)

  • Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.39-45
    • /
    • 2005
  • The aim of this research is to predict the thickness and loading noise of the round-tip shaped Hartzell propeller currently used in the general aviation aircraft. Before implementing the noise analysis, the pressure distribution on the propeller was obtained by using the free wake panel method and unsteady Bernoulli's equation. The noise signal at observer position can be obtained by using the FW-H equation. The noise prediction results for the propeller indicates that the thickness noise has s symmetric directivity pattern with respect to the tip path plane, while the noise due to loading shows higher noise directivity toward downstream than the upstream direction from the rotor plane. The loading noise is dominant rather than the thickness noise in normal operating condition.

Study of Tunnel Face Mapping Using Tunnel Mapper (Tunnel Mapper를 이용한 Tunnel 막장면 조사에 관한 연구)

  • Kwak, No-Kyung;Cho, Sung-Jin;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.200-211
    • /
    • 2010
  • Tunnel Mapper, which is tunnel face survey system was used to conduct Face Mapping on the face of the tunnel that is under construction. Then, accuracy and utility value on the forecast of discontinuity were verified to verify the field application in order to present the measures for the use of the system for conducting research on the discontinuity. As result of the directivity verification following discontinuity‘s project, forecasted measurement and actually researched measurement error for the Dip direction and Dip angle was less than ${\pm}10$. Accuracy was 82.6% for Dip direction and 90.7% for Dip angle, which are high. Accordingly, face research discontinuity forecasting system's reliability level towards directivity is high. Tunnel Mapper, a tunnel face survey system can be leveraged to replace face's visual survey and to obtain objective information, enabling execution of the survey system that can automate face survey going beyond time and space related limitations.

  • PDF

Propagation Characteristics of the Impulse Noise Emitted from the Exit of a Perforated Pipe (다공관 출구로부터 방사된 충격성 소음의 전파특성)

  • 제현수;양수영;이동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.168-173
    • /
    • 2003
  • This experimental study describes the propagation characteristics of the impulse noise emitted from the exit of a perforated pipe attached to the open end of a simple shock tube. The pressure amplitudes and directivities of the impulse wave propagating from the exit of perforated pipe with several different configurations are measured and analyzed fur the range of the incident shock wave Mach number between 1.02 and 1.2. In the experiments, the impulse waves are visualized by a Schlieren optical system for the purpose of investigating their propagation pattern. The results obtained show that for the near sound field the impulse noise strongly propagates toward to the pipe axis, but for the far sound field the impulse noise uniformly propagates toward to the all directions, indicating that the directivity pattern is almost same regardless of the pipe type. Moreover, it is shown that for the far sound field the perforated pipe has little performance to suppress the impulse noise.

  • PDF

Power Line Detection of Arial Images Using Hough Transform (하프변환을 이용한 항공영상의 전력선 검출)

  • Kim, Dong-Wook;Kang, Jeong-Hyuck
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.2
    • /
    • pp.171-179
    • /
    • 2010
  • Effective monitoring and maintenance operation of towers, power lines and other defects to ensure high quality and reliability of electric power supplied to customers is becoming one of the most important tasks of today's power industry. One specific technology that has the potential to automate the entire surveillance process is unmanned aerial vehicles. In this paper, we propose a new power line extraction method using the directivity of a power line and Hough transform to detect efficiently power lines from thermal aerial images. In simulation results for several aerial images, the proposed method shows good performance in extracting power line detection.

Factors influencing clinical nurses' advocacy for people with disability (장애인에 대한 임상간호사의 옹호간호 영향요인)

  • Jeon, Ji Young;Choi, Hyunkyung
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.26 no.3
    • /
    • pp.269-280
    • /
    • 2020
  • Purpose: Clinical nurses are the ideal health care providers to advocate for vulnerable and underserved populations such as people with disability. This study aimed to understand factors influencing nursing advocacy for people with disability among clinical nurses. Methods: The subjects of this study were 186 clinical nurses who were working in three hospitals in B and D cities. Self-report questionnaires were used to collect the data. Data were analyzed using IBM SPSS Statistics 25 with descriptive statistics, t-test, one-way ANOVA, Pearson's correlation coefficients, and multiple regression analysis. Results: Clinical experience and esthetical nursing competency have positive correlations with nursing advocacy, and optimism-human rights has a negative correlation with nursing advocacy. Factors influencing nursing advocacy for people with disability were identified as patient directivity (β=0.36, p=.001), optimism-human rights (β=-0.18, p=.008) and clinical experience (≥10) (β=0.14, p=.036). The final model consisting of these factors explained 19% of the variance of nursing advocacy (F=14.99, p=.001). Conclusion: The findings of this study indicate the importance of developing and implementing nursing interventions that can improve patient directivity and optimism-human rights toward people with disability among clinical nurses. These nursing advocacy interventions can be provided as part of continuing education as well as the nursing curriculum.

Study of Frequency Response Characteristics in Microphone Used by Optical Sensor

  • Yeom, Keong-Tae;Kim, Kwan-Kyu;Kim, Yong-Kab
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.128-133
    • /
    • 2008
  • In this paper, in order to analyze property of frequency response in microphone using optical sensor, acousto-optic sensor system has been implemented. The capacitance microphone and fiber-optic transmission path type fiber-optic microphone (FOM) have weaknesses in directivity, size, weight, and price. However suggested optical microphone can be constituted by cheap devices, so it has many benefits like small size, light weight, high directivity, etc. Head part of optical microphone which is suggested in this paper is movable back and forth by sound pressure with the attached reflection plate. Operating point has also been determined by measuring the response characteristics. The choosing the point, which has maximum linearity and sensitivity has changing the distance between optical head and vibrating plate. We measured the output of the O/E transformed signal of the optical microphone while frequency of sound signal is changed using sound measurement /analysis program, "Smaart Live" and "USBPre", which are based on PC, and compared the result from an existing capacitance microphone. The measured optical microphone showed almost similar output characteristics as those of the compared condenser microphone, and its bandwidth performance was about 4 kHz at up to 3 dB.

Field-Measurement-Based Received Power Analysis for Directional Beamforming Millimeter-Wave Systems: Effects of Beamwidth and Beam Misalignment

  • Lee, Juyul;Kim, Myung-Don;Park, Jae-Joon;Chong, Young Jun
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.26-38
    • /
    • 2018
  • To overcome considerable path loss in millimeter-wave propagation, high-gain directional beamforming is considered to be a key enabling technology for outdoor 5G mobile networks. Associated with beamforming, this paper investigates propagation power loss characteristics in two aspects. The first is beamwidth effects. Owing to the multipath receiving nature of mobile environments, it is expected that a narrower beamwidth antenna will capture fewer multipath signals, while increasing directivity gain. If we normalize the directivity gain, this narrow-beamwidth reception incurs an additional power loss compared to omnidirectional-antenna power reception. With measurement data collected in an urban area at 28 GHz and 38 GHz, we illustrate the amount of these additional propagation losses as a function of the half-power beamwidth. Secondly, we investigate power losses due to steering beam misalignment, as well as the measurement data. The results show that a small angle misalignment can cause a large power loss. Considering that most standard documents provide omnidirectional antenna path loss characteristics, these results are expected to contribute to mmWave mobile system designs.

Analytical evaluation of a modular CFT bridge pier according to directivity

  • Kim, Dongwook;Jeon, Chiho;Shim, Changsu
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1193-1203
    • /
    • 2016
  • This paper focuses on the analytical behavior of modular circular concrete-filled tubular (CFT) column with enhanced bracing details. To design a full-scale bridge pier of multiple circular concrete-filled tubes, numerical analysis was used to evaluate structural performance according to load directivity. In previous research (Ma et al. 2012, Shim et al. 2014), low cycle fatigue failure at bracing joints was observed, so enhanced bracing details to prevent premature failure are proposed in this analysis. The main purpose of this research is to investigate seismic performance for the diagonal direction load without premature failure at the joints when the structure reaches the ultimate load. The ABAQUS finite-element software is used to evaluate experimental performance. A quasi-static loading condition on a modular bridge pier is introduced to investigate structural performance. The results obtained from the analysis are evaluated by comparing with load-displacement responses from experiments. The concrete-filled tubes with enhanced bracing details showed higher energy dissipation capacity and proper performance without connection failure for a diagonal load.