• Title/Summary/Keyword: directional spectrum

Search Result 118, Processing Time 0.022 seconds

The Asymptotic Throughput and Connectivity of Cognitive Radio Networks with Directional Transmission

  • Wei, Zhiqing;Feng, Zhiyong;Zhang, Qixun;Li, Wei;Gulliver, T. Aaron
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.227-237
    • /
    • 2014
  • Throughput scaling laws for two coexisting ad hoc networks with m primary users (PUs) and n secondary users (SUs) randomly distributed in an unit area have been widely studied. Early work showed that the secondary network performs as well as stand-alone networks, namely, the per-node throughput of the secondary networks is ${\Theta}(1/\sqrt{n{\log}n})$. In this paper, we show that by exploiting directional spectrum opportunities in secondary network, the throughput of secondary network can be improved. If the beamwidth of secondary transmitter (TX)'s main lobe is ${\delta}=o(1/{\log}n)$, SUs can achieve a per-node throughput of ${\Theta}(1/\sqrt{n{\log}n})$ for directional transmission and omni reception (DTOR), which is ${\Theta}({\log}n)$ times higher than the throughput with-out directional transmission. On the contrary, if ${\delta}={\omega}(1/{\log}n)$, the throughput gain of SUs is $2{\pi}/{\delta}$ for DTOR compared with the throughput without directional antennas. Similarly, we have derived the throughput for other cases of directional transmission. The connectivity is another critical metric to evaluate the performance of random ad hoc networks. The relation between the number of SUs n and the number of PUs m is assumed to be $n=m^{\beta}$. We show that with the HDP-VDP routing scheme, which is widely employed in the analysis of throughput scaling laws of ad hoc networks, the connectivity of a single SU can be guaranteed when ${\beta}$ > 1, and the connectivity of a single secondary path can be guaranteed when ${\beta}$ > 2. While circumventing routing can improve the connectivity of cognitive radio ad hoc network, we verify that the connectivity of a single SU as well as a single secondary path can be guaranteed when ${\beta}$ > 1. Thus, to achieve the connectivity of secondary networks, the density of SUs should be (asymptotically) bigger than that of PUs.

Prediction Wave Transformation for Using Wave Spceturm (스펙트럼을 이용한 파랑변형 예측)

  • 박정철;김재중
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.235-242
    • /
    • 1999
  • Wave which propagate from the offshore cause transformation of diffraction, refraction, and reflection etc. in coming in the coastal by depth change. Especially, Wave strongly show the charcateristics of rancom wave in the coastal zone. Developed wave model until a recent date analysed regular waves with height and period equal to those of the significant wave, In case of Monochromatic wave, it can be analysed fine in the offshore, but differ from in coastal zone. In this study, form of governing equation is parabolic mild slope equation. This model calculated random wave for using frequency spectrum and directional spectrum from input data condition of wave. This model is applied to Vincent shoal and compared with laboratory experimental data. The results agreed well with laboratory data.

Evaluation of Seismic Fragility Curve of Seismically Isolated Nuclear Power Plant Structures for Artificial Synthetic Earthquakes Corresponding to Maximum-Minimum Spectrum (최대-최소 스펙트럼에 대응하는 인공합성지진에 대한 면진된 원전구조물의 지진취약도 곡선 평가)

  • Kim, Hyeon-Jeong;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.89-99
    • /
    • 2019
  • In order to increase the seismic safety of nuclear power plant (NPP) structures, a technique to reduce the seismic load transmitted to the NPP structure by using a seismic isolation device such as a lead-rubber bearing has recently been actively researched. In seismic design of NPP structures, three directional (two horizontal and one vertical directions) artificial synthetic earthquakes (G0 group) corresponding to the standard design spectrum are generally used. In this study, seismic analysis was performed by using three directional artificial synthetic earthquakes (M0 group) corresponding to the maximum-minimum spectrum reflecting uncertainty of incident direction of earthquake load. The design basis earthquake (DBE) and the beyond design basis earthquakes (BDBEs are equal to 150%, 167%, and 200% DBE) of G0 and M0 earthquake groups were respectively generated for 30 sets and used for the seismic analysis. The purpose of this study is to compare seismic responses and seismic fragility curves of seismically isolated NPP structures subjected to DBE and BDBE. From the seismic fragility curves, the probability of failure of the seismic isolation system when the peak ground acceleration (PGA) is 0.5 g is about 5% for the M0 earthquake group and about 3% for the G0 earthquake group.

Analysis of Multi-directional Random Waves Propagating over Multi Arrayed Impermeable Submerged Breakwater (다열 불투과성 수중방파제를 통과하는 다방향 불규칙파랑의 해석)

  • Jung, Jae-Sang;Kang, Kyu-Young;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.1
    • /
    • pp.29-37
    • /
    • 2007
  • In this study, transmission and reflection of multi-directional random waves propagating over impermeable submerged breakwaters are calculated by using eigenfunction expansion method. A series of mutiderectional random waves is generated by using the Bretschneider-Mitsuyasu frequency and Mitsuyasu type directional spectrum. Strong reflection is occurred at the Bragg reflection condition of the peak frequency. If the row of breakwaters is fixed at 3 and the relative height of breakwater is fixed at 0.6, more than 25% of incident wave energy is reflected to offshore. It is also found that the reflection of directionally spreading random waves increases as the maximum spreading parameter $s_{max}$ increases.

Longitudinal Motion Analysis in Multi-Directional Irregular Waves for a Training Ship using Commercial Code (상용코드를 이용한 다방향 불규칙파중 실습선의 종운동해석)

  • Han, Seung-Jae;Kim, In-Cheol;Oh, Dea-Kyun;Lee, Gyoung-Woo;Gim, Ok-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.153-159
    • /
    • 2012
  • This study gives the vertical motion analysis in multi-directional irregular waves using a commercial code(MAXSURF v.16) based on linear strip theory for a training ship. To verify the commercial code prior to the analysis, we guarantees the reliability of this paper's results using the commercial code by comparing with the results(Flokstra, 1974) of same hull and experimental conditions on a Panamax container. The analysis conditions are Beaufort wind scale No. 5($\bar{T}=5.46$, $H_{1/3}=2m$) based on ITTC wave spectrum, encounter angle Head & bow seas($150^{\circ}$) and Froude number Fn=0.257. Finally, we calculates heave RAO, pitch RAO and obtains the result of ship's response spectra for heave and pitch motions. In the motion response spectrum under the multi-directional irregular waves, heave motion reacts slightly high in short-crested waves and pitch motion reacts high in long-crested waves.

The Effect of Directional Dispersion of Frequency Spectrum on the Joint Distribution of Wave Height, Period and Wave Direction (파고, 주기, 파향의 결합확율분포에 미치는 입사파랑의 방향분산성의 영향)

  • 권정곤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.3
    • /
    • pp.143-151
    • /
    • 1990
  • The sediment transport in shallow water regions has been studied in various ways and, accordingly, many formulas have been proposed. However, when these formulas are applied practically in the field, they are not sufficient to fully estimate the sediment transport rate yet. The primary reason is how to take into account the effect of irregularities of field waves : wave heights, periods and directions. Therefore, it is necessary to investigate stochastic and kinematic characteristics of waves in three dimensional random seas in order to more accurately estimate it. In particular, the asymmetrical properties of directional spectrum become significant and play an important role in various phenomena in a shallow water region. In this study, their effects of incident waves the joint distribution of wave heights, periods and directions are investigated through field measurements.

  • PDF

Upgrade of Neutron Energy Spectrometer with Single Multilayer Bonner Sphere Using Onion-like Structure

  • Mizukoshi, Tomoaki;Watanabe, Kenichi;Yamazaki, Atsushi;Uritan, Akira;Iguchi, Tetsuo;Ogata, Tomohiro;Muramatsu, Takashi
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.185-190
    • /
    • 2016
  • Background: In order to measure neutron energy spectra, the conventional Bonner Sphere Spectrometers (BSS) are widely used. In this spectrometer, several measurements with different size Bonner spheres are required. Operators should, therefore, place these spheres in several times to a measurement point where radiation dose might be relatively high. In order to reduce this effort, novel neutron energy spectrometer using an onion-like single Bonner sphere was proposed in our group. This Bonner sphere has multiple sensitive spherical shell layers in the single sphere. In this spectrometer, a band-shaped thermal neutron detection medium, which consists of a LiF-ZnS mixed powder scintillator sheet and a wavelength-shifting (WLS) fiber readout, was looped to each sphere at equal angular intervals. Amount of LiF neutron converter is reduced near polar region, where the band-shaped detectors are concentrated, in order to uniform the directional sensitivity. The LiF-ZnS mixed powder has an advantage of extremely high light yield. However, since it is opaque, scintillation photons cannot be collect uniformly. This type of detector shows no characteristic shape in the pulse height spectrum. Subsequently, it is difficult to set the pulse height discrimination level. This issue causes sensitivity fluctuation due to gain instability of photodetectors and/or electric modules. Materials and Methods: In order to solve this problem, we propose to replace the LiF-ZnS mixed powder into a flexible and Transparent RUbber SheeT type $LiCaAlF_6$ (TRUST LiCAF) scintillator. TRUST LiCAF scintillator can show a peak shape corresponding to neutron absorption events in the pulse height spectrum. Results and Discussion: We fabricated the prototype detector with five sensitive layers using TRUST LiCAF scintillator and conducted basic experiments to evaluate the directional uniformity of the sensitivity. Conclusion: The fabricated detector shows excellent directional uniformity of the neutron sensitivity.

Ocean Wave Forecasting and Hindercasting Method to Support for Navigational Safety of Ship (선박의 항행안전지원을 위한 파랑추산에 관한 연구)

  • Shin, Seung-Ho;Hashimoto, Noriaki
    • Journal of Navigation and Port Research
    • /
    • v.27 no.2
    • /
    • pp.111-119
    • /
    • 2003
  • In order to improve navigational safety of ships, an ocean wave prediction model of high precision within a short time, dealing with multi-directional random waves from the information of the sea surface winds encountered at the planned ship's course, was introduced for construction of ocean wave forecasting system on the ship. In this paper, we investigated a sea disaster occurred by a stormy weather in the past. We analyzed the sea surface wind first and then carried out ocean wave hindercasting simulations according to the routes the sunken vessel. From the result of this study, we concluded that the sea disaster was caused by rapidly developed iou pressure system Okhotsk Sea and the predicted values by the third generation wave prediction model(WAM) was agreed well with the observed significant wave height, wave period, and directional wave spectrum. It gives a good applicability for construction of a practical on-board calculation system.

Ocean wave forecasting and hindercasting method to support for navigational safety of ship (선박의 항행안전지원을 위한 파낭추산에 관한 연구)

  • 신승호;교본전명
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.147-156
    • /
    • 2003
  • In order to improve navigational safety of ships, on ocean wave prediction model of high precision within a short time, dealing with multi-directional random waves from the information of the sea surface winds encountered at the planned ship's course, was introduced for construction of ocean wave forecasting system on the ship. In this paper, we investigated a sea disaster occurred by a stormy weather in the past. We analyzed the sea surface winds first and then carried out ocean wave hindercasting simulations according to the routes of the sunken vessel. From the result of this study, we concluded that the sea disaster was caused by rapidly developed low pressure system in Okhotsk Sea and the predicted values by the third generation wave prediction model(WAM) was agreed well with the observed significant wave height, was period, and directional wave spectrum. It gives a good applicability for construction of a practical on-board calculation system.

  • PDF