• Title/Summary/Keyword: directional entropy

Search Result 13, Processing Time 0.019 seconds

Wavelet-Based Image Compression Using the Properties of Subbands (대역의 특성을 이용한 웨이블렛 기반 영상 압축 부호화)

  • 박성완;강의성;문동영;고성제
    • Journal of Broadcast Engineering
    • /
    • v.1 no.2
    • /
    • pp.118-132
    • /
    • 1996
  • This paper proposes a wavelet transform- based image compression method using the energy distribution. The proposed method Involves two steps. First, we use a wavelet transform for the subband decomposition. The original image Is decomposed into one low resolution subimage and three high frequency subimages. Each high frequency subimages have horizontal, vertical, and diagonal directional edges. The wavelet transform is luther applied to these high frequency subimages. Resultant transformed subimages have different energy distributions corresponding to different orientation of the high pass filter. Second, for higer compression ratio and computational effciency, we discard some subimages with small energy. The remaining subimages are encoded using either DPCM or quantization followed by entropy coding. Experimental results show that the proposed coding scheme has better performance in the peak signal to noise ratio(PSNR) and higher compression ratio than conventional image coding method using the wavelet transform followed by the straightforward vector quantization.

  • PDF

Orientation-based Adaptive Prediction for Effective Lossless Image Compression (효과적인 무손실 영상압축을 위한 방향성 기반 적응적 예측 방법)

  • Kim, Jongho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2409-2416
    • /
    • 2015
  • This paper presents an orientation-based adaptive prediction method for effective lossless image compression. For a robust prediction, the proposed method estimates the directional information and the property near the current pixel in a support region-based fashion, not a pixel-based one which is sensitive to a small variation. We improve the prediction performance effectively by selection of the prediction pixel adaptively according to the similarity between support regions of the current pixel and the neighboring pixels. Comprehensive experiments demonstrate that the proposed scheme achieves excellent prediction performance measured in entropy of the prediction error compared to a number of conventional prediction methods such as MED, GAP, and EDP. Moreover the complexity of the proposed algorithm measured by average execution time is low compared to MED which is the simplest prediction method.

Nucleus Recognition of Uterine Cervical Pap-Smears using Fuzzy Reasoning Rule (퍼지 추론 규칙을 이용한 자궁 경부진 핵 인식)

  • Kim, Kwang-Baek;Song, Doo-Heon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.3
    • /
    • pp.179-187
    • /
    • 2008
  • In this paper, we apply a set of algorithms to classily normal and cancer nucleus from uterine cervical pap-smear images. First, we use lightening compensation algorithm to restore color images that have defamation through the process of obtaining $1{\times}400$ microscope magnification. Then, we remove the background from images with the histogram distributions of RGB regions. We extract nucleus areas from candidates by applying histogram brightness, Kapur method, and our own 8-direction contour tracing algorithm. Various binarization, cumulative entropy, masking algorithms are used in that process. Then, we are able to recognize normal and cancer nucleus from those areas by using three morphological features - directional information, the size of nucleus, and area ratio - with fuzzy membership functions and deciding rules we devised. The experimental result shows our method has low false recognition rate.

  • PDF