• Title/Summary/Keyword: direction-based particle filter

Search Result 8, Processing Time 0.023 seconds

Directional Particle Filter Using Online Threshold Adaptation for Vehicle Tracking

  • Yildirim, Mustafa Eren;Salman, Yucel Batu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.710-726
    • /
    • 2018
  • This paper presents an extended particle filter to increase the accuracy and decrease the computation load of vehicle tracking. Particle filter has been the subject of extensive interest in video-based tracking which is capable of solving nonlinear and non-Gaussian problems. However, there still exist problems such as preventing unnecessary particle consumption, reducing the computational burden, and increasing the accuracy. We aim to increase the accuracy without an increase in computation load. In proposed method, we calculate the direction angle of the target vehicle. The angular difference between the direction of the target vehicle and each particle of the particle filter is observed. Particles are filtered and weighted, based on their angular difference. Particles with angular difference greater than a threshold is eliminated and the remaining are stored with greater weights in order to increase their probability for state estimation. Threshold value is very critical for performance. Thus, instead of having a constant threshold value, proposed algorithm updates it online. The first advantage of our algorithm is that it prevents the system from failures caused by insufficient amount of particles. Second advantage is to reduce the risk of using unnecessary number of particles in tracking which causes computation load. Proposed algorithm is compared against camshift, direction-based particle filter and condensation algorithms. Results show that the proposed algorithm outperforms the other methods in terms of accuracy, tracking duration and particle consumption.

Direction-Based Modified Particle Filter for Vehicle Tracking

  • Yildirim, Mustafa Eren;Ince, Ibrahim Furkan;Salman, Yucel Batu;Song, Jong Kwan;Park, Jang Sik;Yoon, Byung Woo
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.356-365
    • /
    • 2016
  • This research proposes a modified particle filter to increase the accuracy of vehicle tracking in a noisy and occluded medium. In our proposed method for vehicle tracking, the direction angle of a target vehicle is calculated. The angular difference between the motion direction of the target vehicle and each particle of the particle filter is observed. Particles are filtered and weighted depending on their angular distance to the motion direction. Those particles moving in a direction similar to that of the target vehicle are assigned larger weights; this, in turn, increases their probability in a given likelihood function (part of the process of estimation of a target's state parameters). The proposed method is compared against a condensation algorithm. Our results show that the proposed method improves the stability of a particle filter tracker and decreases the particle consumption.

Pictorial Model of Upper Body based Pose Recognition and Particle Filter Tracking (그림모델과 파티클필터를 이용한 인간 정면 상반신 포즈 인식)

  • Oh, Chi-Min;Islam, Md. Zahidul;Kim, Min-Wook;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.186-192
    • /
    • 2009
  • In this paper, we represent the recognition method for human frontal upper body pose. In HCI(Human Computer Interaction) and HRI(Human Robot Interaction) when a interaction is established the human has usually frontal direction to the robot or computer and use hand gestures then we decide to focus on human frontal upper-body pose, The two main difficulties are firstly human pose is consist of many parts which cause high DOF(Degree Of Freedom) then the modeling of human pose is difficult. Secondly the matching between image features and modeling information is difficult. Then using Pictorial Model we model the human main poses which are mainly took the space of frontal upper-body poses and we recognize the main poses by making main pose database. using determined main pose we used the model parameters for particle filter which predicts the posterior distribution for pose parameters and can determine more specific pose by updating model parameters from the particle having the maximum likelihood. Therefore based on recognizing main poses and tracking the specific pose we recognize the human frontal upper body poses.

  • PDF

Measurement of Black Carbon Concentration and Comparison with PM10 and PM2.5 Concentrations monitored at the Chungcheong Province in Korea. (충청지역 블랙카본 농도 측정 및 PM10, PM2.5 농도와의 비교 분석 연구)

  • Cha, Youngbum;Lee, Shihyoung;Lee, Jeonghoon
    • Particle and aerosol research
    • /
    • v.13 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • In order to characterize atmospheric aerosols in Chungcheong area, black carbon concentration, which is known to be closely related to global warming, was measured and compared with $PM_{10}$, $PM_{2.5}$ concentrations and various meteorological parameters such as wind velocity and wind direction. Multi Angle Absorption Photometer (MAAP), a filter-based equipment, was used for the black carbon measurement, and the $PM_{10}$, $PM_{2.5}$ concentrations, wind velocity and wind direction were provided by the local monitoring stations. Black carbon concentration was monitored to be high in spring and winter but low in fall. $PM_{10}$ concentration was observed to be high when westerly wind was strong.

Mobile Robot Localization in Geometrically Similar Environment Combining Wi-Fi with Laser SLAM

  • Gengyu Ge;Junke Li;Zhong Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1339-1355
    • /
    • 2023
  • Localization is a hot research spot for many areas, especially in the mobile robot field. Due to the weak signal of the global positioning system (GPS), the alternative schemes in an indoor environment include wireless signal transmitting and receiving solutions, laser rangefinder to build a map followed by a re-localization stage and visual positioning methods, etc. Among all wireless signal positioning techniques, Wi-Fi is the most common one. Wi-Fi access points are installed in most indoor areas of human activities, and smart devices equipped with Wi-Fi modules can be seen everywhere. However, the localization of a mobile robot using a Wi-Fi scheme usually lacks orientation information. Besides, the distance error is large because of indoor signal interference. Another research direction that mainly refers to laser sensors is to actively detect the environment and achieve positioning. An occupancy grid map is built by using the simultaneous localization and mapping (SLAM) method when the mobile robot enters the indoor environment for the first time. When the robot enters the environment again, it can localize itself according to the known map. Nevertheless, this scheme only works effectively based on the prerequisite that those areas have salient geometrical features. If the areas have similar scanning structures, such as a long corridor or similar rooms, the traditional methods always fail. To address the weakness of the above two methods, this work proposes a coarse-to-fine paradigm and an improved localization algorithm that utilizes Wi-Fi to assist the robot localization in a geometrically similar environment. Firstly, a grid map is built by using laser SLAM. Secondly, a fingerprint database is built in the offline phase. Then, the RSSI values are achieved in the localization stage to get a coarse localization. Finally, an improved particle filter method based on the Wi-Fi signal values is proposed to realize a fine localization. Experimental results show that our approach is effective and robust for both global localization and the kidnapped robot problem. The localization success rate reaches 97.33%, while the traditional method always fails.

Fireworks Modeling Technique based on Particle Tracking (입자추적기반의 불꽃 모델링 기법)

  • Cho, ChangWoo;Kim, KiHyun;Jeong, ChangSung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.102-109
    • /
    • 2014
  • A particle system is used for modeling the physical phenomenon. There are many traditional ways for simulation modeling which can be well suited for application including the landscapes of branches, clouds, waves, fog, rain, snow and fireworks in the three-dimensional space. In this paper, we present a new fireworks modeling technique for modeling 3D firework based on Firework Particle Tracking (FPT) using the particle system. Our method can track and recognize the launched and exploded particle of fireworks, and extracts relatively accurate 3D positions of the particles using 3D depth values. It can realize 3D simulation by using tracking information such as position, speed, color and life time of the firework particle. We exploit Region of Interest (ROI) for fast particle extraction and the prevention of false particle extraction caused by noise. Moreover, Kalman filter is used to enhance the robustness in launch step. We propose a new fireworks particle tracking method for the efficient tracking of particles by considering maximum moving range and moving direction of particles, and shall show that the 3D speeds of particles can be obtained by finding the rotation angles of fireworks. Also, we carry out the performance evaluation of particle tracking: tracking speed and accuracy for tracking, classification, rotation angle respectively with respect to four types of fireworks: sphere, circle, chrysanthemum and heart.

Design of Fingerprints Identification Based on RBFNN Using Image Processing Techniques (영상처리 기법을 통한 RBFNN 패턴 분류기 기반 개선된 지문인식 시스템 설계)

  • Bae, Jong-Soo;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1060-1069
    • /
    • 2016
  • In this paper, we introduce the fingerprint recognition system based on Radial Basis Function Neural Network(RBFNN). Fingerprints are classified as four types(Whole, Arch, Right roof, Left roof). The preprocessing methods such as fast fourier transform, normalization, calculation of ridge's direction, filtering with gabor filter, binarization and rotation algorithm, are used in order to extract the features on fingerprint images and then those features are considered as the inputs of the network. RBFNN uses Fuzzy C-Means(FCM) clustering in the hidden layer and polynomial functions such as linear, quadratic, and modified quadratic are defined as connection weights of the network. Particle Swarm Optimization (PSO) algorithm optimizes a number of essential parameters needed to improve the accuracy of RBFNN. Those optimized parameters include the number of clusters and the fuzzification coefficient used in the FCM algorithm, and the orders of polynomial of networks. The performance evaluation of the proposed fingerprint recognition system is illustrated with the use of fingerprint data sets that are collected through Anguli program.

Analysis of Poly Aromatic Hydrocarbon (PAH) Pollutants Originated from Local Road Dust by Spacial Measurements (공간 측정에 의한 도로변 발생 다환방향족탄화수소 연구)

  • Park, Da-Jeong;Cho, In-Hwan;Lee, Kwang-Yul;Park, Kihong;Lee, Yeong-Jae;Ahn, Joon-Young;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.3
    • /
    • pp.272-279
    • /
    • 2016
  • Understanding sources and contributions of $PM_{2.5}$ mass and particulate PAHs from traffic-related pollution can provide valuable information for alleviating air contamination from car emissions in urban areas. Two sampling sites at the Gwangju Institute of Science and Technology (GIST, $35.228^{\circ}N$, $126.843^{\circ}E$) and National institute of environmental research NamBu Supersite (NNBS, $35.226^{\circ}N$, $126.848^{\circ}E$) were selected for comprehensive road-oriented-PM investigations. Continuous measurements from optical particle sizer (OPS) and optical particle counter (OPC) with 24 hr integrated filter based samplers for organic carbon, water soluble organic carbon, and Poly Aromatic Hydrocarbons (PAHs) were conducted during Nov. 3 through 22 in 2014. As a result, $PM_{2.5}$ mass concentrations using OPC and OPS in NNBS presented about twice higher than in GIST due to road dust impacts based on wind direction analysis. In addition, ratios of elemental carbon (EC) to organic carbon (OC) and water insoluble organic carbon (WIOC) to organic carbon (OC) supported an additional evidence of the primary pollutant contributions oriented from road dust. PAHs related to 5 rings such as benzo(e&a)pyrene indicates higher associations.