• Title/Summary/Keyword: direction of atmospheric pressure

Search Result 65, Processing Time 0.027 seconds

Development of an Automatic Fog Water Collector (자동 안개 채취기 개발)

  • Lee, Seung-Kew;Kim, Il-Hwan
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.183-188
    • /
    • 2000
  • In this paper, we present a development of automatic fog water collector that operates during fog events. This collector consists of fraction collectors, a wind hall and a fog sensor. When a fog event is begin, then the fog sensor would judge whether it is a fog or not. If a fog is detected, the fog would be gathered by air suction fans, At the same time, the wind direction, the wind velocity, the atmospheric temperature and pressure would be measured and record simultaneously. We are also developing a wireless communication system for the remote control and data analysis to collect, store and process data collected in the automatic fog water collector.

  • PDF

The investigation of rock cutting simulation based on discrete element method

  • Zhu, Xiaohua;Liu, Weiji;Lv, Yanxin
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.977-995
    • /
    • 2017
  • It is well accepted that rock failure mechanism influence the cutting efficiency and determination of optimum cutting parameters. In this paper, an attempt was made to research the factors that affect the failure mechanism based on discrete element method (DEM). The influences of cutting depth, hydrostatic pressure, cutting velocity, back rake angle and joint set on failure mechanism in rock-cutting are researched by PFC2D. The results show that: the ductile failure occurs at shallow cutting depths, the brittle failure occurs as the depth of cut increases beyond a threshold value. The mean cutting forces have a linear related to the cutting depth if the cutting action is dominated by the ductile mode, however, the mean cutting forces are deviate from the linear relationship while the cutting action is dominated by the brittle mode. The failure mechanism changes from brittle mode with larger chips under atmospheric conditions, to ductile mode with crushed chips under hydrostatic conditions. As the cutting velocity increases, a grow number of micro-cracks are initiated around the cutter and the volume of the chipped fragmentation is decreasing correspondingly. The crack initiates and propagates parallel to the free surface with a smaller rake angle, but with the rake angle increases, the direction of crack initiation and propagation is changed to towards the intact rock. The existence of joint set have significant influence on crack initiation and propagation, it makes the crack prone to propagate along the joint.

Vertical Measurement and Analysis of Meteorological Factors Over Boseong Region Using Meteorological Drones (기상드론을 이용한 보성 지역 기상 인자의 연직 측정 및 분석)

  • Chong, Jihyo;Shin, Seungsook;Hwang, Sung Eun;Lee, Seungho;Lee, Seung-Hyeop;Kim, Baek-Jo;Kim, Seungbum
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.575-587
    • /
    • 2020
  • Meteorological phenomena are observed by the Korea Meteorological Administration in a variety of ways (e.g., surface, upper-air, marine, ocean, and aviation). However, there are limits to the meteorological observation of the planetary boundary layer (PBL) that greatly affects human life. In particular, observations using a sonde or aircraft require significant observational costs in economic terms. Therefore, the goal of this study was to measure and analyze the meteorological factors of the vertical distribution of the see-land breeze among local meteorological phenomena using meteorological drones. To investigate the spatial distribution of the see-land breeze, a same integrated meteorological sensor was mounted on each drone at three different points (seaside, bottom of mountain, and mountainside), including the Boseong tall tower (BTT) at the Boseong Standard Weather Observatory (BSWO) in the Boseong region. Vertical profile observations for air temperature, relative humidity, wind direction, wind speed, and air pressure were conducted up to 400 m every 30 minutes from 1100 LST to 1800 LST on August 4, 2018. The spatial characteristics of meteorological phenomena for temperature, relative humidity, and atmospheric pressure were not shown at the four points. Strong winds (~8 m s-1) were observed from the midpoint (~100 m) at strong solar radiation hour, and in the afternoon the wind direction changed from the upper layer at the inland area to the west wind. It is expected that the analysis results of the lower atmospheric layer observed using the meteorological drone may help to improve the weather forecast more accurately.

Sensitivity Analysis of Satellite BUV Ozone Profile Retrievals on Meteorological Parameter Errors (기상 입력장 오차에 대한 자외선 오존 프로파일 산출 알고리즘 민감도 분석)

  • Shin, Daegeun;Bak, Juseon;Kim, Jae Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.481-494
    • /
    • 2018
  • The accurate radiative transfer model simulation is essential for an accurate ozone profile retrieval using optimal estimation from backscattered ultraviolet (BUV) measurement. The input parameters of the radiative transfer model are the main factors that determine the model accuracy. In particular, meteorological parameters such as temperature and surface pressure have a direct effect on simulating radiation spectrum as a component for calculating ozone absorption cross section and Rayleigh scattering. Hence, a sensitivity of UV ozone profile retrievals to these parameters has been investigated using radiative transfer model. The surface pressure shows an average error within 100 hPa in the daily / monthly climatological data based on the numerical weather prediction model, and the calculated ozone retrieval error is less than 0.2 DU for each layer. On the other hand, the temperature shows an error of 1-7K depending on the observation station and altitude for the same daily / monthly climatological data, and the calculated ozone retrieval error is about 4 DU for each layer. These results can help to understand the obtained vertical ozone information from satellite. In addition, they are expected to be used effectively in selecting the meteorological input data and establishing the system design direction in the process of applying the algorithm to satellite operation.

Characteristics of Surface and Synoptic Meteorology During High-Ozone Episodes in the Greater Seoul Area (서울.수도권 지역 고농도 오존 사례의 지상 및 종관 기상 특성)

  • 오현선;김영성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.4
    • /
    • pp.441-455
    • /
    • 1999
  • Meteorological characteristics of three high-ozone episodes in the Greater Seoul Area, selected on the basis of morning-average wind direction and speed for the 1990~1997 period, were investigated. Three high-ozone episodes thus selected were seven days of July 3~9, 1992, nine days of July 21~29, 1994, and three days of August 22~24, 1994. Along with surface meteorological data from the Seoul Weather Station, surface and 850-hPa wind fields over the Northest Asia around the Korean Peninsula were used for the analysis. In the July 1992 episode, westerly winds were most frequent as a result of the influence of a high-pressure system in the west behind the trough. In contrast, in the July 1994 episode, easterly winds were most frequent due to the effect of a typhoon moving north from the south of Japan. Despite different prevailing wind directions in the two episodes, the peak ozone concentration of each episode always occurred when a sea-land breeze developed in association with weak synoptic forcing. The August 1994 episode, selected as being representative of calm conditions, was another typical example in which peak ozone concentration rose to 322 ppb under the well-developed sea-land breeze. All three high-ozone episodes were terminated by precipitation, and subsequent rises in ozone concentrations were also suppressed by a series of precipitation afterwards. In particular, two heavy rainfalls were the main reason why the August 1994 episode, with the highest and second-highest ozone concentrations during the 1990~1997 period, lasted for only a few days.

  • PDF

Meteorological Characteristics related to the Variation in Ozone Concentrations before, during, and after the Typhoon Period in the Korean Peninsula (한반도 태풍영향 전·중·후 시기동안 오존농도 변화에 관한 기상특성 분석)

  • Shin, Hyeonjin;Song, Sang-Keun
    • Journal of Environmental Science International
    • /
    • v.26 no.5
    • /
    • pp.621-638
    • /
    • 2017
  • Meteorological characteristics related to variations in ozone ($O_3$) concentrations in the Korean peninsula before, during, and after Typhoon Talas (1112) were analyzed using both observation data and numerical modeling. This case study takes into account a high $O_3$ episode (e.g., a daily maximum of ${\geq}90ppb$) without rainfall. Before the typhoon period, high $O_3$ concentrations in the study areas (e.g., Daejeon, Daegu, and Busan) resulted from the combined effects of stable atmospheric conditions with high temperature under a migratory anticyclone (including subsiding air), and wind convergence due to a change in direction caused by the typhoon. The $O_3$ concentrations during the typhoon period decreased around the study area due to very weak photochemical activity under increased cloud cover and active vertical dispersion under a low pressure system. However, the maximum $O_3$ concentrations during this period were somewhat high (similar to those in the normal period extraneous to the typhoon), possibly because of the relatively slow photochemical loss of $O_3$ by a $H_2O+O(^1D)$ reaction resulting from the low air temperature and low relative humidity. The lowest $O_3$ concentrations during the typhoon period were relatively high compared to the period before and after the typhoon, mainly due to the transport effect resulting from the strong nocturnal winds caused by the typhoon. In addition, the $O_3$ increase observed at night in Daegu and Busan was primarily caused by local wind conditions (e.g., mountain winds) and atmospheric stagnation in the wind convergence zone around inland mountains and valleys.

Analysis of Meteorological and Radiation Characteristics using WISE Observation Data (WISE 관측자료를 이용한 기상 및 복사 특성 분석)

  • Lee, Hankyung;Jee, Joon-Bum;Min, Jae-Sik;Kim, Sangil;Chae, Jung-Hoon
    • Journal of the Korean earth science society
    • /
    • v.39 no.1
    • /
    • pp.89-102
    • /
    • 2018
  • We analyzed the meteorological and radiation characteristics of Seoul metropolitan area using data from energy flux towers that were installed and operated by the Weather Information Service Engine (WISE). The meteorological and radiation variables included temperature, pressure, wind speed, wind direction, relative humidity, surface temperature, rainfall amount, upward and downward solar radiation, upward and downward longwave radiation, albedo and emissivity from 14 energy flux stations located in the Seoul metropolitan area from July 2016 to July 2017. According to the monthly data during the period, the albedo is low and emissivity is high at the Jungnang station in the urban and opposite at Bucheon station in the suburban area. For a station in natural state, the albedo was higher than urban stations because solar radiation reflects effectively. Relatively high temperatures were shown at stations located in urban area with low albedo and high emissivity, in general. However, temperature was high at Gajwa and Ttukseom stations, the albedo was relatively high due to the station environment surrounded by glass wall buildings and the Han river. In the station located in suburban area, both emissivity and temperature were low. Among these stations, Bucheon station had the highest emissivity values because the surface temperature was relatively lower than that of the suburban area. As a result, the albedo decreased and the emissivity increased at stations in urban areas. Additionally, Seoul metropolitan area had less than $100Wm^{-2}$ of net radiation, which implied that radiation energy could be absorbed in the atmosphere.

Forecasting of Various Air Pollutant Parameters in Bangalore Using Naïve Bayesian

  • Shivkumar M;Sudhindra K R;Pranesha T S;Chate D M;Beig G
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.196-200
    • /
    • 2024
  • Weather forecasting is considered to be of utmost important among various important sectors such as flood management and hydro-electricity generation. Although there are various numerical methods for weather forecasting but majority of them are reported to be Mechanistic computationally demanding due to their complexities. Therefore, it is necessary to develop and build models for accurately predicting the weather conditions which are faster as well as efficient in comparison to the prevalent meteorological models. The study has been undertaken to forecast various atmospheric parameters in the city of Bangalore using Naïve Bayes algorithms. The individual parameters analyzed in the study consisted of wind speed (WS), wind direction (WD), relative humidity (RH), solar radiation (SR), black carbon (BC), radiative forcing (RF), air temperature (AT), bar pressure (BP), PM10 and PM2.5 of the Bangalore city collected from Air Quality Monitoring Station for a period of 5 years from January 2015 to May 2019. The study concluded that Naive Bayes is an easy and efficient classifier that is centered on Bayes theorem, is quite efficient in forecasting the various air pollution parameters of the city of Bangalore.

Tubular-shaped ZnO Crystals by Thermal Evaporation Technique in Air (공기 중에서 열증발법에 의하여 제작된 튜브 형상의 ZnO 결정)

  • Lee, Jung-Hun;Lee, Geun-Hyoung;Nahm, Choon-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.141-145
    • /
    • 2014
  • Tubular-shaped ZnO crystals were synthesized by thermal evaporation technique under air atmosphere. Mixture of Zn and Mg powder was used as the source material. The thermal evaporation and oxidation of Zn/Mg mixture were carried out for 1 hr at $1,000^{\circ}C$ and $1,200^{\circ}C$ under in air under atmospheric pressure. When only Zn powder was used as a source material, tetrapod-shaped ZnO crystals were synthesized. This provides that Mg played a key role in the formation of the tubular-shaped crystals. SEM images showed that the tubular-shaped ZnO crystals grew along [0001] direction. XRD spectrum revealed that the ZnO tubes had hexagonal wurtzite structure. Two emission peaks at 380 nm and 510 nm were observed in the room temperature cathodoluminescence spectrum.

ESTIMATION OF PRECIPITABLE WATER VAPOR USING THE GPS (GPS를 이용한 대류권의 수증기량 측정)

  • 문용진;최규홍;박필호
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.61-68
    • /
    • 1999
  • The radio waves transmitted from GPS satellites is delayed by the troposphere as they propagate to Earth-based GPS receivers. The troposphere delay is usually divided into two parts, the dry delay due to the atmospheric gases and the wet delay due to the water vapor. In this study for the month of May in 1998 the GPS data from two stations(Taejon, Suwon) were used to estimate the total troposphere delay in the zenith direction by the least square method. The dry delay in the zenith direction can be evaluated by using surface pressure values at the station, then the zenith wet delay is obtained by removing the zenith dry delay from the total delay. The zenith wet delay is strongly correlated with the total precipitable water. The quality of the estimate has been assessed by comparison with radiosonde data at Osan. We found the food agreement in precipitable water of the GPS estimates and the radiosonde data. The standard deviation of the difference of the difference between the GPS and radiosonde observations was 3.68mm at Suwon.

  • PDF