• Title/Summary/Keyword: direction feature

Search Result 593, Processing Time 0.027 seconds

Automatic detection of the optimal ejecting direction based on a discrete Gauss map

  • Inui, Masatomo;Kamei, Hidekazu;Umezu, Nobuyuki
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.48-54
    • /
    • 2014
  • In this paper, the authors propose a system for assisting mold designers of plastic parts. With a CAD model of a part, the system automatically determines the optimal ejecting direction of the part with minimum undercuts. Since plastic parts are generally very thin, many rib features are placed on the inner side of the part to give sufficient structural strength. Our system extracts the rib features from the CAD model of the part, and determines the possible ejecting directions based on the geometric properties of the features. The system then selects the optimal direction with minimum undercuts. Possible ejecting directions are represented as discrete points on a Gauss map. Our new point distribution method for the Gauss map is based on the concept of the architectural geodesic dome. A hierarchical structure is also introduced in the point distribution, with a higher level "rough" Gauss map with rather sparse point distribution and another lower level "fine" Gauss map with much denser point distribution. A system is implemented and computational experiments are performed. Our system requires less than 10 seconds to determine the optimal ejecting direction of a CAD model with more than 1 million polygons.

Off-line Handwritten Digit Recognition by Combining Direction Codes of Strokes (획의 방향 코드 조합에 의한 오프라인 필기체 숫자 인식)

  • Lee Chan-Hee;Jung Soon-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1581-1590
    • /
    • 2004
  • We present a robust off-line method recognizing handwritten digits by only using stroke direction codes as a feature of handwritten digits. This method makes general 8-direction codes for an input digit and then has the multi-layered neural networks learn them and recognize each digit. The 8-direction codes are made of the thinned results of each digit through SOG*(Improved Self-Organizing Graph). And the usage of these codes simplifies the complex steps processing at least two features of the existing methods. The experimental result shows that the recognition rates of this method are constantly better than 98.85% for any images in all digit databases.

A Study of Property F.R.P Structure Strength According to the Direction of Lay-up in the Small Ship (적층 방향에 따른 F.R.P 구조강도특성에 관한 연구)

  • 고재용;배동균;윤순동
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.101-105
    • /
    • 2002
  • FRP(Fiber glass reinforced plastics) is compound with materials, which are created to combine each other materials, of which nature of mechanical and chemical are different. Even though the weight and the thickness are identic, its physical figure of characteristic changes with consisting of lay-up and work situation. It is also a method of creating after manufacturing of mould. It has feature that manufacturing of FRP runs parallel design of material with design of structure simultaneously. The rule of FRP structure is distinguished from the length of a ship and it is hard to catch the feature of structure mechanics due to identical formula and figure used for it regardless of the shape of a ship or the speed. This studying, basing on a small FRP ship, will show te fundamental data needed to design of structure analysing the feature of intensity with direction, the method of Lay-up, and the characteristic of materials of FRP.

  • PDF

Method for Road Vanishing Point Detection Using DNN and Hog Feature (DNN과 HoG Feature를 이용한 도로 소실점 검출 방법)

  • Yoon, Dae-Eun;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.125-131
    • /
    • 2019
  • A vanishing point is a point on an image to which parallel lines projected from a real space gather. A vanishing point in a road space provides important spatial information. It is possible to improve the position of an extracted lane or generate a depth map image using a vanishing point in the road space. In this paper, we propose a method of detecting vanishing points on images taken from a vehicle's point of view using Deep Neural Network (DNN) and Histogram of Oriented Gradient (HoG). The proposed algorithm is divided into a HoG feature extraction step, in which the edge direction is extracted by dividing an image into blocks, a DNN learning step, and a test step. In the learning stage, learning is performed using 2,300 road images taken from a vehicle's point of views. In the test phase, the efficiency of the proposed algorithm using the Normalized Euclidean Distance (NormDist) method is measured.

Forecasting of Short-term Wind Power Generation Based on SVR Using Characteristics of Wind Direction and Wind Speed (풍향과 풍속의 특징을 이용한 SVR기반 단기풍력발전량 예측)

  • Kim, Yeong-ju;Jeong, Min-a;Son, Nam-rye
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.1085-1092
    • /
    • 2017
  • In this paper, we propose a wind forecasting method that reflects wind characteristics to improve the accuracy of wind power prediction. The proposed method consists of extracting wind characteristics and predicting power generation. The part that extracts the characteristics of the wind uses correlation analysis of power generation amount, wind direction and wind speed. Based on the correlation between the wind direction and the wind speed, the feature vector is extracted by clustering using the K-means method. In the prediction part, machine learning is performed using the SVR that generalizes the SVM so that an arbitrary real value can be predicted. Machine learning was compared with the proposed method which reflects the characteristics of wind and the conventional method which does not reflect wind characteristics. To verify the accuracy and feasibility of the proposed method, we used the data collected from three different locations of Jeju Island wind farm. Experimental results show that the error of the proposed method is better than that of general wind power generation.

Analysis of tail flip of the target prawn at the time of penetrating mesh in water flow by tank experiments

  • KIM, Yonghae;GORDON, Malcolm S.
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.4
    • /
    • pp.308-317
    • /
    • 2016
  • The tail flip of the decapod shrimp is a main feature in escaping behavior from the mesh of the codend in the trawl. The characteristics of tail flip in target prawn was observed and analyzed in a water tunnel in respect of flow condition and mesh penetration by a high speed video camera (500 fps). The tail bending angle or bending time in static water was significantly different than in flow water (0.7 m/s) and resultantly the angular velocity in static water was significantly higher than in flow water when carapace was fixed condition. When escaping through vertical traverse net panel in water flow the relative moving angle and relative passing angle to flow direction during tail flip, it significantly decreases the number of shrimps escaping than the case of blocking shrimp. The bending angles of tail flip between net blocking and passing through mesh were not significantly different while the bending time of shrimp passing through mesh was significantly longer than when shrimp blocking on the net. Accordingly the angular velocity of passing through mesh was significantly slower than blocking on the net although the angular velocity of the tail flip was not significantly related with carapace length. The main feature of tail flip for mesh penetration was considered as smaller diagonal direction as moving and passing angle in relation to net panel as right angle to flow direction rather than the angular velocity of tail flip.

Category-Based Feature Inference: Testing Causal Strength (범주기반 속성추론: 인과관계 강도의 검증)

  • JunHyoung Jo;Hyung-Chul O. Li;ShinWoo Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.1
    • /
    • pp.55-64
    • /
    • 2023
  • This research investigated category-based feature inference when category features were connected in common cause and common effect causal networks. Previous studies that tested feature inference in causal categories showed unique inference patterns depending on causal direction, number of related features, whether the to-be-inferred feature was cause or effect, etc. However, these prior studies primarily focused on inference pattens that arise from causal relations, and few studies directly explored how the effects of causal relations vary depending on causal strength. We tested feature inference in common cause (Expt. 1) and common effect (Expt. 2) causal categories when casual strengths were either strong or weak. To this end, we had participants learn causal categories where features were causally linked and then perform feature inference task. The results showed that causal strengths as well as causal relations had important impacts on feature inference. When causal strength was strong, inference for common cause feature became weaker but that for the common effect feature became stronger. Moreover, when causal strength was strong and common cause was present, inference for the effect features became stronger, whereas the results were reversed in common effect networks. In particular, in common effect networks, casual discounting was more evident with strong causal strength. These results consistently demonstrate that participants consider not only causal relations but also causal strength in feature inference of causal categories.

3D Depth Camera-based Obstacle Detection in the Active Safety System of an Electric Wheelchair (전동휠체어 주행안전을 위한 3차원 깊이카메라 기반 장애물검출)

  • Seo, Joonho;Kim, Chang Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.552-556
    • /
    • 2016
  • Obstacle detection is a key feature in the safe driving control of electric wheelchairs. The suggested obstacle detection algorithm was designed to provide obstacle avoidance direction and detect the existence of cliffs. By means of this information, the wheelchair can determine where to steer and whether to stop or go. A 3D depth camera (Microsoft KINECT) is used to scan the 3D point data of the scene, extract information on obstacles, and produce a steering direction for obstacle avoidance. To be specific, ground detection is applied to extract the obstacle candidates from the scanned data and the candidates are projected onto a 2D map. The 2D map provides discretized information of the extracted obstacles to decide on the avoidance direction (left or right) of the wheelchair. As an additional function, cliff detection is developed. By defining the "cliffband," the ratio of the predefined band area and the detected area within the band area, the cliff detection algorithm can decide if a cliff is in front of the wheelchair. Vehicle tests were carried out by applying the algorithm to the electric wheelchair. Additionally, detailed functions of obstacle detection, such as providing avoidance direction and detecting the existence of cliffs, were demonstrated.

Microstrip Circular Slot Antenna Using a Spiral Line (스파이럴 라인을 이용한 마이크로스크립 원형 슬롯 안테나)

  • Kim, Myoung-Ki;Park, Ik-Mo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.5
    • /
    • pp.16-22
    • /
    • 2001
  • A novel microstrip circular slot antenna fed by a spiral line is presented in this paper. This antenna is a planar equivalent structure of an eccentric spiral antenna generates a circularly-polarized wave. We have investigated the input impedance and radiation characteristics of this antenna by using an EM (electromagnetic) simulator, and obtained a design method [or optimum structure. The main characteristic of the antenna is that the main beam direction is off-normal to the antenna plane and moves linearly into ${\theta }$ and ${\phi }$ direction as the frequency increases. This feature allows one to predict the main beam direction easily for a given operating frequency. This antenna has axial ratio lower than 3 dB in the direction of main beam over one octave bandwidth.

  • PDF

Photo Retrieval System using Combination of Smart Sensor and Visual Descriptor (스마트 센서와 시각적 기술자를 결합한 사진 검색 시스템)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.45-52
    • /
    • 2014
  • This paper proposes an efficient photo retrieval system that automatically indexes for searching of relevant images, using a combination of geo-coded information, direction/location of image capture device and content-based visual features. A photo image is labeled with its GPS (Global Positioning System) coordinates and direction of the camera view at the moment of capture, and the label leads to generate a geo-spatial index with three core elements of latitude, longitude and viewing direction. Then, content-based visual features are extracted and combined with the geo-spatial information, for indexing and retrieving the photo images. For user's querying process, the proposed method adopts two steps as a progressive approach, filtering the relevant subset prior to use a content-based ranking function. To evaluate the performance of the proposed scheme, we assess the simulation performance in terms of average precision and F-score, using a natural photo collection. Comparing the proposed approach to retrieve using only visual features, an improvement of 20.8% was observed. The experimental results show that the proposed method exhibited a significant enhancement of around 7.2% in retrieval effectiveness, compared to previous work. These results reveal that a combination of context and content analysis is markedly more efficient and meaningful that using only visual feature for image search.