• Title/Summary/Keyword: direct-sequence spread-spectrum

Search Result 173, Processing Time 0.022 seconds

The Effect of Electromagnetic Noise on the Wireless LAN Using Direct Sequence Spread Spectrum (DSSS 방식용 무선 LAN에 대한 전파 잡음의 영향)

  • Kim, Che-Young;Park, Jeung-Keun;Park, Seng-Keun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.630-639
    • /
    • 2008
  • In this paper, we investigate the cause of throughput degradation on the wireless local area network(WLAN) and the reason of interference level change attributed to the spanned frequency in the presence of electromagnetic interference. We also measured and quantified the electric field strength of interference which yields the abrupt change of the throughput. Two units of WLAN and one unit of AP(Access Point) are configured to maintain the radio link. As the sources of interference, both the co-channel and adjacent-channel interference are considered and the critical values of electric field are provided for each case. Our experimental observations show that the signal strength generated from these interference sources is at most less than 54 dBuV/m @3 m in order to coexist between WLANs and other low power radio devices without any noticeable throughput decreases. Based on our empirical results, as far as 802.11b WLAN is concerned, we believe that the current domestic limit of the signal strength for an extremely low power radio device, 30.9 dBuV/m @3 m, can be increased as much as 23.1 dB.

A Study on the Mobile Communication System for the Ultra High Speed Communication Network (초고속 정보통신망을 위한 이동수신 시스템에 관한 연구)

  • Kim, Kab-Ki;Moon, Myung-Ho;Shin, Dong-Hun;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.1-14
    • /
    • 1998
  • In this paper, Antenna, LNA, Mixer, VCO, and Modulation/Demodulation in Baseband processor which are the RF main components in Wireless LAN system for ultra high-speed communications network are studied. Antenna bandwidth and selective fading due to multipath can be major obstacles in high speed digital communications. To solve this problem, wide band MSA which has loop-structure magnetic antenna characteristics is designed. Distributed mixer using dual-gate GaAs MESFET can achieve over 10dB LO/RF isolation without hybrid, and minimize circuit size. As linear mixing signal is produced, distortions can be decreased at baseband signals. Conversion gain is achieved by mixing and amplification simultaneously. Mixer is designed to have wide band characteristics using distributed amplifier. In VCO design, Oscillator design method by large signal analysis is used to produce stable signal. Modulation/Demodulation system in baseband processor, DS/SS technique which is robust against noise and interference is used to eliminate the effect of multipath propagation. DQPSK modulation technique with M-sequences for wideband PN spreading signals is adopted because of BER characteristic and high speed digital signal transmission.

  • PDF

Development of Hardware for the Architecture of A Remote Vital Sign Monitor (무선 체온 모니터기 아키텍처 하드웨어 개발)

  • Jang, Dong-Wook;Jang, Sung-Whan;Jeong, Byoung-Jo;Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2549-2558
    • /
    • 2010
  • A Remote Vital Sign Monitor is an in-home healthcare system designed to wirelessly monitor core-body temperature. The Remote Vital Sign Monitor provides accuracy and features which are comparable to hospital equipment while minimizing cost with ease-of-use. It has two parts, a bandage and a monitor. The bandage and the monitor both use the Chipcon2430(CC2430) which contains an integrated 2.4GHz Direct Sequence Spread Spectrum radio. The CC2430 allows Remote Vital Sign Monitor to operate at over a 100-foot indoor radius. A simple user interface allows the user to set an upper temperature and a lower temperature that is monitored with respect to the core-body temperature. If the core-body temperature exceeds the one of two defined temperatures, the alarm will sound. The alarm is powered by a low-voltage audio amplifier circuit which is connected to a speaker. In order to accurately calculate the core-body temperature, the Remote Vital Sign Monitor must utilize an accurate temperature sensing device. The thermistor selected from GE Sensing satisfies the need for a sensitive and accurate temperature reading. The LCD monitor has a screen size that measures 64.5mm long by 16.4mm wide and also contains back light, and this should allow the user to clearly view the monitor from at least 3 feet away in both light and dark situations.