• 제목/요약/키워드: direct torque control(DTC)

검색결과 153건 처리시간 0.02초

Analysis of Cascaded H-Bridge Multilevel Inverter in DTC-SVM Induction Motor Drive for FCEV

  • Gholinezhad, Javad;Noroozian, Reza
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.304-315
    • /
    • 2013
  • In this paper, analysis of cascaded H-bridge multilevel inverter in DTC-SVM (Direct Torque Control-Space Vector Modulation) based induction motor drive for FCEV (Fuel Cell Electric Vehicle) is presented. Cascaded H-bridge multilevel inverter uses multiple series units of H-bridge power cells to achieve medium-voltage operation and low harmonic distortion. In FCEV, a fuel cell stack is used as the major source of electric power moreover the battery and/or ultra-capacitor is used to assist the fuel cell. These sources are suitable for utilizing in cascaded H-bridge multilevel inverter. The drive control strategy is based on DTC-SVM technique. In this scheme, first, stator voltage vector is calculated and then realized by SVM method. Contribution of multilevel inverter to the DTC-SVM scheme is led to achieve high performance motor drive. Simulations are carried out in Matlab-Simulink. Five-level and nine-level inverters are applied in 3hp FCEV induction motor drive for analysis the multilevel inverter. Each H-bridge is implemented using one fuel cell and battery. Good dynamic control and low ripple in the torque and the flux as well as distortion decrease in voltage and current profiles, demonstrate the great performance of multilevel inverter in DTC-SVM induction motor drive for vehicle application.

유도전동기의 직접토오크제어 모델링 및 시뮬레이션 (Direct Torque Control Modeling & Simulation for Induction Motor)

  • 이강연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.421-424
    • /
    • 2000
  • Direct Torque Control(DTC) of AC motor has the fast torque and flux dynamic responses even though it has very simple scheme to implement. However DTC do not show good performance at low speed range with conventional open loop stator flux observer when stator resistance varied. So authors proposed nonlinear stator flux obsever in order to flux estimation at low speed and show its simulation results.

  • PDF

Direct Stator Flux Vector Control Strategy for IPMSM using a Full-order State Observer

  • Yuan, Qingwei;Zeng, Zhiyong;Zhao, Rongxiang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.236-248
    • /
    • 2017
  • A direct stator flux vector control scheme in discrete-time domain is proposed in this paper for the interior permanent magnet synchronous motor (IPMSM) drive to remove the proportional-integral (PI) controller from the direct torque control (DTC) scheme applied to IPMSM and to obtain faster dynamic response and lower torque ripple output. The output of speed outer loop is used as the desired torque angle instead of the desired torque in the proposed scheme. The desired stator flux vector in dq coordinate is calculated with a given amplitude. The state-space equations in discrete-time for IPMSM are established, the actual stator flux vector is estimated in deadbeat manner by a full-order state observer, and then the closed-loop control is achieved by the pole placement. The stator flux error vector is utilized to calculate the reference stator voltage vector. Extracting the angle position and amplitude from the estimated stator flux vector and estimating the output torque are eliminated for the direct feedback control of the stator flux vector. The proposed scheme is comparatively investigated with a PI-SVM DTC scheme by experiment results. Experimental results show the feasibility and advantages of the proposed control scheme.

직접토크제어에 의한 리럭턴스 동기전동기의 고성능 제어시스템 (A High-Performance Control System of Reluctance Synchronous Motor with Direct Torque Control)

  • 김민회
    • 전기학회논문지P
    • /
    • 제51권2호
    • /
    • pp.68-76
    • /
    • 2002
  • This paper presents an implementation of high-dynamic performance control system of Reluctance Synchronous Motor (RSM) drives for an industrial servo system with direct torque control (DTC). The problems of DTC for high-dynamic performance and maximum efficiency RSM drives are the nonlinear variable flux and inductance due to a saturated stator linkage flux and nonlinear inductance curve with various load currents. The accurate estimation of the stator flux and torque are obtained using stator flux observer of which a saturated inductance Ld and Lq can be compensated by using the adapted neural network from measuring the modulus and angle of the stator current. To obtain fast torque response and maximum torque/current with varying load current, the reference command flux is ensured by imposing Ids=Iqs. This control strategy is proposed to fast response and optimal efficiency for RSM drive. In order to prove rightness of the suggested control algorithm, we have some actual experimental system using 6000 pulse/rev encoder at ${\pm}10$ and ${\pm}1500rpm$. The developed digitally high-performance control system are shown some good response characteristics of control results and high performance features using 1.0kW RSM of which has 2.57 Ld/Lq salient ratio.

신경회로망을 이용한 동기 릴럭턴스 전동기의 직접토크제어 시스템 (A Direct Torque Control System for Reluctance Synchronous Motor Using Neural Network)

  • 김민회
    • 전기학회논문지P
    • /
    • 제54권1호
    • /
    • pp.20-29
    • /
    • 2005
  • This paper presents an implementation of efficiency optimization of reluctance synchronous motor (RSM) using a neural network (NN) with a direct torque control (DTC). The equipment circuit considered with iron losses in RSM is analyzed theoretically, and the optimal current ratio between torque current and exiting current component are derived analytically. For the RSM driver, torque dynamic can be maintained with DTC using TMS320F2812 DSP Controller even with controlling the flux level because a torque is directly proportional to the stator current unlike induction motor. In order to drive RSM at maximum efficiency and good dynamics response, the Backpropagation Neural Network is adapted. The experimental results are presented to validate the applicability of the proposed method. The developed control system show high efficiency and good dynamic response features with 1.0 [kW] RSM having 2.57 inductance ratio of d/q.

5상 유도전동기의 속도응답특성 개선을 위한 직접토크제어 시스템 (A Direct Torque Control System for Improving Speed Response of Five-Phase Induction Motor)

  • 김민회;최성운
    • 조명전기설비학회논문지
    • /
    • 제26권1호
    • /
    • pp.66-74
    • /
    • 2012
  • This paper propose a improved direct torque control(DTC) system for improving operation of five-phase squirrel-cage induction motor(IM). A five-phase IM drives present unique characteristics due to the additional degrees of freedom and also drives possess many others advantage compared with the traditional three-phase motor drive system, such as reducing a amplitude of torque pulsation and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated windings and the produced back-electromotive force(EMF) is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus third harmonic of currents, there is necessary to controlled 3rd harmonic current. Also a DTC method is advantageous when it is applied to the five-phase IM, because the five-phase inverter provides 32 space vectors in comparison to 8 space voltage vectors into the three-phase inverter drive system. For presenting the superior performance of the proposed DTC, experimental results of speed control are presented using a 32-bit fixed point TMS320F2812 DSP with 1.5[hp] IM.

Low Parameter Sensitivity Deadbeat Direct Torque Control for Surface Mounted Permanent Magnet Synchronous Motors

  • Zhang, Xiao-Guang;Wang, Ke-Qin;Hou, Ben-Shuai
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1211-1222
    • /
    • 2017
  • In order to decrease the parameter sensitivity of deadbeat direct torque control (DB-DTC), an improved deadbeat direct torque control method for surface mounted permanent-magnet synchronous motor (SPMSM) drives is proposed. First, the track errors of the stator flux and torque that are caused by model parameter mismatch are analyzed. Then a sliding mode observer is designed, which is able to predict the d-q axis currents of the next control period for one-step delay compensation, and to simultaneously estimate the model parameter disturbance. The estimated disturbance of this observer is used to estimate the stator resistance offline. Then the estimated resistance is required to update the designed sliding-mode observer, which can be used to estimate the inductance and permanent-magnetic flux linkage online. In addition, the flux and torque estimation of the next control period, which is unaffected by the model parameter disturbance, is achieved by using predictive d-q axis currents and estimated parameters. Hence, a low parameter sensitivity DB-DTC method is developed. Simulation and experimental results show the validity of the proposed direct control method.

고정자 자속을 기반으로 한 유도전동기의 새로운 직접 토크 제어 (A Novel Direct Torque Control of Induction Machines based on Stator Flux)

  • 박준현;정종진;최종우;김흥근;노의철;부경대학교전기제어계측공학부조교수
    • 전력전자학회논문지
    • /
    • 제7권3호
    • /
    • pp.297-302
    • /
    • 2002
  • 유도전동기의 직접 토크 제어방식은 구조가 간단하여 구현이 용이하고, 빠른 토크 응답성을 갖는 것을 특징으로 견인용 유도전동기의 추동시스템 등에 그 응용분야를 넓혀가고 있다. 그러나 히스테리시스 제어기를 사용하여 출력전압을 결정하는 기존의 직접 토크 제어방식에서는 인버터의 스위칭 주파수가 히스테리시스 밴드 폭과 운전조건에 따라 가변하고 토크맥동이 발생하는 문제점이 있다. 따라서 본 논문에서는 인버터의 스위칭 주파수를 일정하게 유지하고 저속 및 고속 운전영역에서 전동기의 토크 및 고정자 전류 맥등을 저감하기 위한 목적으로 고정자 자속 제어개념과 공간전압벡터 P%에 의한 새로운 직접 토크 제어방식을 제안하였다. 시뮬레이션과 실험을 통해 제안한 알고리즘의 타당성을 입증하였다.

5상 유도전동기 구동을 위한 수정된 직접 토크제어 시스템 (The Modified Direct Torque Control System for Five-Phase Induction Motor Drives)

  • 김민회;김남훈;백원식
    • 조명전기설비학회논문지
    • /
    • 제23권2호
    • /
    • pp.138-147
    • /
    • 2009
  • 본 논문에서는 5상 농형유도전동기(Five-phase squirrel-cage induction motor)의 수정된 직접 토크제어(Direct torque control, DTC) 시스템을 제안한다. 5상 유도전동기 구동은 추가적인 자유도로 인하여 개선된 특성이 얻어짐과 동시에 일반적인 3상 유도전동기에 비해 토크의 맥동이 감소하며, 신뢰성 증가와 같은 장점을 가진다. 5상 유도전동기의 직접 토크제어는 인버터 구동시스템이 기존의 3상 인버터가 8개의 공간전압 벡터를 가지고 있는 것에 비해서 32개의 공간전압 벡터를 제공하기 때문에 여러 가지 장점이 있다. 그러나 5상 전동기의 경우는 제3공간 고조파 성분으로 인하여 구조적인 단점을 가지고 있어 고조파 성분의 전류제어가 요구된다. 따라서 이 논문에서는 5상 유도전동기의 특성을 개선하기 위하여 제3고조파 전류성분을 제어할 수 있는 수정된 직접 토크제어 시스템을 제시한다. 전통적인 5상 유도전동기의 직접 토크제어와 제안된 직접 토크제어 시스템의 운전특성을 검증하기 위하여, 디지털 제어기로 32[bit] 고정소수점 DSP인 TMS320F2812를 사용하여 2.2[kW] 5상 유도전동기의 속도제어 시스템을 구성하여 동특성을 관찰한 결과 우수한 특성이 얻어짐을 확인하였다.

Improved Direct Torque Control of Permanent Magnet Synchronous Electrical Vehicle Motor with Proportional-Integral Resistance Estimator

  • Hartani, Kada;Miloud, Yahia;Miloudi, Abdellah
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권3호
    • /
    • pp.451-461
    • /
    • 2010
  • Electric vehicles (EVs) require fast torque response and high drive efficiency. This paper describes a control scheme of fuzzy direct torque control of permanent magnet synchronous motor for EVs. This control strategy is extensively used in EV application. With direct torque control (DTC), the electromagnetic torque and stator flux can be estimated using the measured stator voltages and currents. The estimation depends on motor parameters, except for the stator resistance. The variation of stator resistance due to changes in temperature or frequency downgrades the performance of DTC, which is controlled by introducing errors in the estimated flux linkage vector and the electromagnetic torque. Thus, compensation for the effect of stator resistance variation becomes necessary. This work proposes the estimation of the stator resistance and its compensation using a proportional-integral estimation method. An electronic differential has been also used, which has the advantage of replacing loose, heavy, and inefficient mechanical transmission and mechanical differential with a more efficient, light, and small electric motors that are directly coupled to the wheels through a single gear or an in-wheel motor.