• Title/Summary/Keyword: direct torque control(DTC)

Search Result 153, Processing Time 0.021 seconds

Direct Torque Control of Induction Motor Using Flux & Torque Slop (자속 및 토오크 기울기를 이용한 유도전동기의 직접토오크 제어)

  • Choi, Youn-Ok;Choi, Mon-Han;Jeong, Sam-Young;Cho, Geum-Bae;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1135-1137
    • /
    • 2003
  • The conventional DTC strategy provides a fast torque response even though it has very simple scheme consisted with only two hysteresis band comparators and a switching table for torque and flux control. Drawbacks of the conventional BTC are relatively high torque ripple at low speed and variation of the switching frequency according to motor speed. In this paper, the new direct torque control(BTC) schemes are proposed. Those schemes are based on the torque slope and and flux to reduce the torque ripple.

  • PDF

Flying Capacitor DTC Drive with Reductions in Common Mode Voltage and Stator Overvoltage

  • Rahmati, Abdolreza;Arasteh, Mohammad;Farhangi, Shahrokh;Abrishamifar, Adib
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.512-519
    • /
    • 2011
  • This paper gives a detailed analysis of the direct torque control (DTC) strategy in a five-level drive and proposes a 24-sector switching table. The known problems in low-voltage drives such as bearings currents and an overvoltage phenomenon which leads to premature failure are reviewed and the occurrence of these problems in medium voltage drives has been investigated. Then a solutions to these problems is presented and the switching table to deal with these problems is modified. Simulation and experimental results on a 3kVA prototype confirm the proposed solution. In implementing the above strategy a TMS320F2812 is used.

Induction Motor Direct Torque Control with Fuzzy Logic Method

  • Chikhi, Abdessalem;Chikhi, Khaled
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.234-239
    • /
    • 2009
  • In this article we present the simulation results of induction motor speed regulation by direct torque control with a classic PI regulator. The MATLAB Simulink programming environment is used as a simulation tool. The results obtained, using a fuzzy logic, shows the importance of this method in the improvement of the performance of such regulation.

A study on the torque ripple reduction of PMSM in direct torque control by using dither signal (Dithering기법에 의한 직접 토크 제어 방식의 토크리플 개선에 관한 연구)

  • Lee H.H.;Kim J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.415-419
    • /
    • 2003
  • This paper focuses on a simple technique to reduced torque ripple in the direct torque control inverter for PMSM drive. It is actually impossible to raise the inverter switching frequency in the conventional system, although the hysterisis bandwidths for the stator flux and torque control are sufficiently diminished, because of the sampling Interval and the delay in estimating the flux and the torque In order to overcome the problem, the proposed method introduces a dithering technique into the conventional system by superposing triangular waves with high frequency and minute amplitude on the torque error. And the programable 3- stage lowpass filter is added instead of pure Integrator. Simulation results prove the feasibility of proposed strategy compared with conventional method.

  • PDF

A Study on Inductance compensation of Reluctance Synchronous Motor with Neural Network (신경망을 이용한 리럭턴스 동기전동기(Reluctance Synchronous Motor)의 인덕턴스 보상에 관한 연구)

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik;Park, Hong-Il;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.151-154
    • /
    • 2002
  • This paper presents an implementation of high-dynamic performance control system of Reluctance Synchronous Motor(RSM) drives for an industrial servo drive system with direct torque control(DTC). The estimation of the stator flux and torque are obtained by using flux observer which a saturated inductance Ld and Lq of d-q axises can be compensated by using the neural network from measuring the modulus and angle of the stator current space vector. To obtain fast torque response and maximum torque/current, the reference command flux is ensured by imposing Ids=Iqs. The control strategy is proposed to fast response and optimal efficiency for RSM drive. The developed digitally high-performance control system are shown a good response characteristic of control results and high performance features using 1.0kW RSM.

  • PDF

Direct Torque Control Strategy (DTC) Based on Fuzzy Logic Controller for a Permanent Magnet Synchronous Machine Drive

  • Tlemcani, A.;Bouchhida, O.;Benmansour, K.;Boudana, D.;Boucherit, M.S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.66-78
    • /
    • 2009
  • This paper introduces the design of a fuzzy logic controller in conjunction with direct torque control strategy for a Permanent Magnet synchronous machine. A stator flux angle mapping technique is proposed to reduce significantly the size of the rule base to a great extent so that the fuzzy reasoning speed increases. Also, a fuzzy resistance estimator is developed to estimate the change in the stator resistance. The change in the steady state value of stator current for a constant torque and flux reference is used to change the value of stator resistance used by the controller to match the machine resistance.

Dynamic Performance Analysis for Different Vector-Controlled CSI- Fed Induction Motor Drives

  • Mark, Arul Prasanna;Irudayaraj, Gerald Christopher Raj;Vairamani, Rajasekaran;Mylsamy, Kaliamoorthy
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.989-999
    • /
    • 2014
  • High-performance Current Source Inverter (CSI)-fed, variable speed alternating current drives are prepared for various industrial applications. CSI-fed Induction Motor (IM) drives are managed by using different control methods. Noteworthy methods include scalar Control (V/f), Input-Output Linearization (IOL) control, Field-Oriented Control (FOC), and Direct Torque Control (DTC). The objective of this work is to compare the dynamic performance of the aforementioned drive control methods for CSI-fed IM drives. The dynamic performance results of the proposed drives are individually analyzed through sensitivity tests. The tests selected for the comparison are step changes in the reference speed and torque of the motor drive. The operation and performance of different vector control methods are verified through simulations with MATLAB/Simulink and experimental results.

Time Delay Compensation for Output Voltage Vector Selection in Direct Torque Control of Induction Machine (유도전동기의 직접토크제어 시스템에서 출력전압벡터선정을 위한 시간지연의 보상)

  • 최병태;박철우;권우현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.632-639
    • /
    • 2003
  • This paper proposes a simple compensation scheme for the time delay caused by measurement, calculation and selection of voltage vector in Direct Torque Control (DTC) of an induction motor. In general scheme, it is difficult to know the exact delay time, furthermore the delay time can be varied by program routines for calculation and processing of measured data. In this proposed scheme, by applying voltage vector at the beginning of next sampling period, a fixed delay time is achieved and its compensation becomes much simpler. Furthermore, with the simple compensation algorithm, an improved performance can be achieved by shortening sampling period. Experimental results prove the feasibility of the proposed scheme in induction motor control.

Torque Ripple Reduction in Three-Level Inverter-Fed Permanent Magnet Synchronous Motor Drives by Duty-Cycle Direct Torque Control Using an Evaluation Table

  • Chen, Wei;Zhao, Ying-Ying;Zhou, Zhan-Qing;Yan, Yan;Xia, Chang-Liang
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.368-379
    • /
    • 2017
  • In this paper, a direct torque control algorithm with novel duty cycle-based modulation is proposed for permanent magnet synchronous motor drives fed by neutral-point clamped three-level inverters. Compared with the standard DTC, the proposed algorithm can suppress steady-state torque ripples as well as ensure neutral-point potential balance and smooth vector switching. A unified torque/flux evaluation table with multiple voltage vectors and precise control levels is established and used in this method. This table can be used to evaluate the effects of duty-cycle vectors on torque and flux directly, and the elements of the table are independent of the motor parameters. Consequently, a high number of appropriate voltage vectors and their corresponding duty cycles can be selected as candidate vectors to reduce torque ripples by looking up the table. Furthermore, small vectors are incorporated into the table to ensure the neutral-point potential balance with the numerous candidate vectors. The feasibility and effectiveness of the proposed algorithm are verified by both simulations and experiments.

Torque Tracking and Ripple Reduction of Permanent Magnet Synchronous Motor using Finite Control Set-Model Predictive Control (FCS-MPC) (영구자석 동기 전동기의 토크 제어 및 토크 리플 저감을 위한 유한 제어요소 모델 예측제어(FCS-MPC) 설계)

  • Park, Hyo-Seong;Lee, YoungIl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.249-256
    • /
    • 2014
  • This paper proposes a torque control method of permanent magnet synchronous motor, which has small torque ripple. The proposed control method is using the finite control set-model predictive control(FCS-MPC) strategy. An optimal input voltage vector minimizing a cost function is chosen among 6 passible active input voltage vectors following the FCS-MPC strategy. Then, a modulation factor for the optimal input voltage vector is computed to minimize the torque ripple. Thus, the proposed control method yields fast torque response and small torque ripple. The efficacy of the proposed method was verified through simulation and experiment.