• Title/Summary/Keyword: direct tension

Search Result 235, Processing Time 0.025 seconds

Electrode bonding method and characteristic of high density rechargeable battery using induction heating system (유도 가열 접합 시스템을 이용한 대용량 이차전지 전극의 접합 방법 및 특성)

  • Kim, Eun-Min;Kim, Shin-Hyo;Hong, Won-Hee;Cho, Dae-Kweon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.688-697
    • /
    • 2014
  • In this study, electrode bonding technology needed for high density of rechargeable battery is studied, which is recently researched for electric vehicle, the small leisure vessel. For the alternative overcoming the limit of stacking amount able to be stacked by conventional ultrasonic welding, the low temperature bonding method, eligible for minimum of degeneration of chemical activator on the electrode surface which is generated by thermal effect as well as the increase of conductivity and tension strength caused by electrode bonding using filler metal, not using conventional direct heating on the electrode material method, is studied. Specifically to say, recently used more generally the ultrasonic welding and spot welding method are not usable for satisfying stable electric conductivity and bonding strength when much electrode is stacking bonded. If the electrical power is unreasonably increased for the welding, due to the effect of welding temperature, deformation of electrode and activating material degeneration are caused, and after the last packaging, decline of electrical output and generating heat cause to reduce stability of battery. Therefore, in this study, induction heating system bonding method using high frequency heating and differentiated electrode method using filler metal pre-treatment of hot dipping are introduced.

Crack Spacing in RC Tension Members Considering Cover Thickness and Concrete Compressive Strength (피복두께와 콘크리트 강도를 고려한 철근콘크리트 인장부재의 균열간격)

  • Kim, Woo;Lee, Ki-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.193-202
    • /
    • 2018
  • This paper proposed a crack spacing calculation formulation which is an important parameter for calculating the crack width, that is the main factor for verification of serviceability limit states and durability performance evaluation of reinforced concrete members. The basic equation of average crack spacing is derived by considering the bond characteristics which is the governing equation for the analysis of cracking behavior in reinforced concrete members. In order to consider the effect of the cover thickness and concrete compressive strength, the crack spacing measured in 124 direct tensile tests performed by several researchers was analyzed and each coefficient was proposed. And, correlation analysis was performed from 80 specimen data where the maximum and average crack spacing were simultaneously measured, and a correlation coefficient that can easily predict the maximum crack spacing from the average crack spacing was proposed. The results of the proposed average crack spacing equation and maximum crack spacing correlation were compared with those current design code specification. The comparisons of proposed equations and the Korean design codes show that the proposed formulation for the average crack spacing and the maximum crack spacing improves the accuracy and reliability of prediction compared to the corresponding provisions of the Korean Concrete Structural Design Code and Korean Highway Bridge Design Code (Limit States Design).

The Influence of Hong Kong Problems on Cross Strait Relationship (홍콩문제가 양안관계에 미치는 영향)

  • Kim, Won-Kon
    • Journal of Digital Convergence
    • /
    • v.18 no.10
    • /
    • pp.95-105
    • /
    • 2020
  • The Hong Kong issue covered in the study refers to the problems caused by the various measures and policies taken by the Chinese government since Hong Kong's return to China on July 1, 1997, and the resistance and resistance shown by the Hong Kong people. Since Hong Kong's return The Chinese government carried out a policy of strengthening direct control over Hong Kong, and on June 30, 2020, the Standing Committee of the National People's Congress of China passed the Hong Kong National Security Act. This study will focus on the impact of the Hong Kong issue on Cross-Strait Relations. Through this, we will take a look at the application of the "one-country, two-system" policy, Taiwan and China's Unification Issues and the democratization of Hong Kong. This study predicts that after the passage of the "Hong kong National security law," the principle of "one-country, two-system" that China tried to apply to unification with Taiwan will be put into a big test, and that Cross-Strait Relations and U.S.-China relations will deteriorate. Tension will quickly arise around Northeast Asia in the future, and we should also analyze and prepare for it in various ways.

Effects of Expansive Admixture on the Mechanical Properties of Strain-Hardening Cement Composite (SHCC) (팽창재 치환율에 따른 섬유보강 시멘트 복합체의 역학적 특성)

  • Lee, Young-Oh;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.617-624
    • /
    • 2010
  • This paper reports on a comprehensive study on the mechanical properties of expansive fiber-reinforced strainhardening cement composite (SHCC) materials containing various replacement levels (0, 8, 10, 12 and 14%) of an expansive admixture and 1.5% polyethylene (PE) fibers volume fraction. A number of experimental tests were conducted to investigate shrinkage, compressive strength, flexural strength, and direct tension behavior. Test results show that as expected, the different replacement levels of an expansive admixture have an important effect on the evolution of the free shrinkage of SHCC with a rich mixture. At the volume fraction of 1.5%, PE fibers in normal SHCC reduce free shrinkage deformation by about 30% in comparison to plain mortar. The replacement of an expansive admixture in SHCC material has led the SHCC to a better initial cracking behavior. Enhanced cracking tendency improved mechanical properties of SHCC materials with rich mixtures. Note that an increase in the replacement of expansive admixture from 10% to 14% does not lead to a significant improvement for mechanical properties; this implies that the replacement of 10% expansive admixture is sufficient.

Diagnosis of Work-related Musculoskeletal Disease through Moire Image Pattern and Treatment Measure using a Sling System (Moire' 영상무늬를 통한 근골격계질환의 진단과 현가장치를 이용한 치료방안)

  • Lee Sang-Yong;Lee Eun-Kyong;Kwon So-Hee;Jung He-Kyong;Kim Sam-Tae;Chong Myong-Soo;Lee Ki-Nam
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.7 no.2
    • /
    • pp.121-130
    • /
    • 2003
  • The Musculoskeletal Disease has been ignored or turned away due to the difficulty of diagnosis and the vagueness of judgement up to now. Contrary to other diseases, there were many cases where the character of the Musculoskeletal Disease wasn't revealed through the objective inspection. And that's because the Musculoskeletal Disease appears for the most part due to muscular defect so it is impossible to diagnose the muscle by X-ray diagnosing the bone and it is also impossible to diagnose the fine damage of the muscle or tendon even by advanced device like MRI. As the nervous blood vessels or acupunctures pass through or are next to the muscle, the tension of the muscle put pressure on these so can become the direct or indirect causes of various kinds of pains or intern diseases. But in spite of that, for lack of proper equipment diagnosing the state of the muscle(Shortened.. Relaxed... or Hardened...) the muscle has been disregarded or neglected intentionally or unintentionally. While many people think themselves to be a muscular expert, if they don't see the shape of the muscle, that is just like blind treatment. But as now the equipment diagnosing the state of the muscle is developed, it seems that this problem can be settled. It was attempted in this study that the muscle or skeleton of the Musculoskeletal disease patients was diagno the treatment order and method were decided by a questionnaire survey and simple inspection, and the Musculoskeletal correction exercise using the muscle management and sling system made them escape from the Musculoskeletal disease, turning their muscle into more flexible and stronger muscle. As a result notwithstanding the limited treatment period '12 times', the improvement rate was as high as 74%, which showed that the muscle management and Musculoskeletal correction exercise had a great effect on the symptom improvement of the patients. If the treatment times had increased, the improvement rate also would have increased more.

  • PDF

Determination of Bond Strength and Fracture Energy of a Bi-material Cylinder with Peny-shaped Interface Crack by Pull-off Test (직접인장시험에 의한 원형 비부착면이 삽입된 신.구 콘크리트의 부착강도 및 파괴에너지 산정)

  • Yang, Sung-Chul;Kim, Jin-Chul;Park, Jong-Won
    • International Journal of Highway Engineering
    • /
    • v.6 no.1 s.19
    • /
    • pp.47-56
    • /
    • 2004
  • To determine the pure bond strength between substrate and its overlayed concrete material, a direct pull-off test method was introduced by using a bi-material cylinder with which a penny-shaped crack was mountained at its interface. First, to evaluate the stress magnification or concentration at the interface, the energy release rates of a penny-shaped interface crack in remote tension loading on a bi-material cylinder were determined in terms of different modulus ratios and undonded area ratios(crack ratios) using a commercial finite element program. Then the energy release rates were calibrated as non-dimensional values in consideration of structural dimensions and applied forces. And to evaluate whether this new pull-off test method gives sound test results, three different sizes of unbended area ratios were incorporated along their interface in bi-material cylinders(sulphur polymer concrete + old concrete). Test results showed that all specimens were broken off at their interfaces as intended. Also the FEM analyses and test results indicated that a bi-material specimen with unbended area ratio of 0.4$\sim$0.6 is suitable for best accurate testing.

  • PDF

Topography and Soil Characteristics Related to Land Creep in 37 Areas in South Korea (우리나라 37개 땅밀림지의 지질 및 토양 특성)

  • Park, Jae-Hyeon;Seo, Jung Il;Ma, Ho-Seop;Kim, Dongyeob;Kang, Minjeng;Kim, Kidae
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.540-551
    • /
    • 2019
  • This study was conducted to provide basic data for classifying patterns of land creep in 37 areas in South Korea using geological and soil property analyses. Geological time, as it relates to land creep areas in South Korea, had been most impactful for the Gyeongsang Supergroup and its sedimentary bedrock during the Cretaceous period. In this area, perfect ridge cliffs in land creeping areas included 20 plots (approximately 54.0%), while tension cracking areas with ambiguous ridge cliff characteristics included 17 plots (approximately 46.0%). Hesitant slide slope types included 20 plots (approximately 54.0%) within theslide slope of an incident pattern (slide slope figure) in land creeping areas. Colluvial debris types among land creep patterns were the most frequent and included 25 plots (approximately 68.0%). The direct causes of land creep were cutting of foothills, quarrying, land-clearing in mountains, mining exploration, and the creation of burial grounds, all of which added to geological impacts. Among land creeping areas, 27 plots (approximately 73.0%) were the result of man-made activities, and 10 plots (approximately 27.0%) were derived via natural causes such as earthquakes, heavy rainfall, and caving.

$Na^{+}/Ca^{2+}$ Exchange System in Atrial Trabeculae and Vascular Smooth Muscle of the Rabbit (토끼 심방근 및 혈관 평활근에서의 $Na^{+}/Ca^{2+}$ 교환기전에 관한 연구)

  • Kim, Hee-Ju;Moon, Hyung-Ro;Earm, Yung-E;Ho, Won-Kyung
    • The Korean Journal of Physiology
    • /
    • v.22 no.1
    • /
    • pp.13-29
    • /
    • 1988
  • In order to elucidate the regulatory mechanism of intracellular calcium ion concentrations, contractions or contractures induced by $Na^{+}-removal$, calcium-application or ouabain-treatment as an index of $Na^+/Ca^{2+}$ exchange activity were studied in atrial muscle or vascular smooth muscle (aorta and renal artery) of the rabbit. The magnitude of low sodium contractures in atrial trabeculae increased with sigmoid shape when external sodium concentrations were reduced to sodium-free condition, whereas that of calcium contracture intensified in a parabolic pattern when external calcium concentrations were elevated to 8 mM. $Na^{+}-removal$ contractures were induced in a duration-dependent manner to $K^{+}-free$ exposure and same findings were observed with ouabain treatment. $Na^{+}-free$ contractures were not affected by verapamil treatment, but stimulated by $100{\mu}M\;Mn^{2+}$ and inhibited by high concentrations of $Mn^{2+}\;(2{\sim}8mM)$ in a dose-dependent manner. Ryanodine which is known to suppress the release of calcium from internal store abolished spontaneous twitch contractions induced by $K^{+}-free$ solution, but had no effect on the development $Na^{+}-free$ contractures. Na-free contractures were not always induced in vascular smooth muscle preparations. Contractures by $O\;mM\;Na^+$ were usually seen in aorta, but not often in renal artery.$50\;mM\;K^+$, noradrenaline (NA) and angiotensin II (AII) always evoked very large contraction in all preparations of vascular smooth muscle. Contractures developed by $O\;mM\;Na^+$ were not sensitive to verapamil treatment as in atrial trabeculae, but were abolished by $100{\mu}M\;Mn^{2+}$. In contrast to $Na^{+}-free$ contractures, $Mn^{2+}(100{\mu}M)$ had no effect on the contractures induced by NA or 50 mM$K^+$. Caffeine in the concentration of 10 mM evoked transient contracture in the distal renal artery. The rate of spontaneous relaxation in caffeine contracture was dependent upon the concentrations of external sodium, and had double component of relaxation when the rate of relaxation was plotted in the semilogarithmic scale of relative tension versus time. Especially late components of relaxation had more direct relation to $Na^+$ concentrations. It could be concluded that $Na^+/Ca^{2+}$ exchange mechanism in the heart has a large capacity, inhibited by $Mn^{2+}$ but not by verapamil and ryanodine, while $Na^+/Ca^{2+}$ exchange system in vascular smooth muscle has a very low capacity especially in small artery, inhibited by low concentration of $Mn^{2+}\;(100{\mu}M)$ but not affected by verapamil and ryanodine.

  • PDF

Interspecies Transfer and Regulation of Pseudomonas stutzeri A1501 Nitrogen Fixation Island in Escherichia coli

  • Han, Yunlei;Lu, Na;Chen, Qinghua;Zhan, Yuhua;Liu, Wei Liu;Lu, Wei;Zhu, Baoli;Lin, Min;Yang, Zhirong;Yan, Yongliang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1339-1348
    • /
    • 2015
  • Until now, considerable effort has been made to engineer novel nitrogen-fixing organisms through the transfer of nif genes from various diazotrophs to non-nitrogen fixers; however, regulatory coupling of the heterologous nif genes with the regulatory system of the new host is still not well understood. In this work, a 49 kb nitrogen fixation island from P. stutzeri A1501 was transferred into E. coli using a novel and efficient transformation strategy, and a series of recombinant nitrogen-fixing E. coli strains were obtained. We found that the nitrogenase activity of the recombinant E. coli strain EN-01, similar to the parent strain P. stutzeri A1501, was dependent on external ammonia concentration, oxygen tension, and temperature. We further found that there existed a regulatory coupling between the E. coli general nitrogen regulatory system and the heterologous P. stutzeri nif island in the recombinant E. coli strain. We also provided evidence that the E. coli general nitrogen regulator GlnG protein was involved in the activation of the nif-specific regulator NifA via a direct interaction with the NifA promoter. To the best of our knowledge, this work plays a groundbreaking role in increasing understanding of the regulatory coupling of the heterologous nitrogen fixation system with the regulatory system of the recipient host. Furthermore, it will shed light on the structure and functional integrity of the nif island and will be useful for the construction of novel and more robust nitrogen-fixing organisms through biosynthetic engineering.

Calculation of Horizontal Shear Strength in Reinforced Concrete Composite Beams (철근콘크리트 합성보의 수평전단강도 산정)

  • Kim, Min-Joong;Lee, Gi-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.772-781
    • /
    • 2020
  • A direct shear member resists external forces through the shear transfer of reinforcing bars placed at the concrete interface. The current concrete structural design code uses empirical formulas based on the shear friction analogy, which is applied to the horizontal shear of concrete composite beams. However, in the case of a member with a large amount of reinforcing bars, the shear strength obtained through the empirical formula is lower than the measured value. In this paper, the limit state of newly constructed composite beams on an existing concrete girder is defined using stress field theory, and material constitutive laws are applied to gain horizontal shear strength while considering the tension-stiffening and softening effects of concrete struts. A simplified method of calculating the shear strength is proposed, which was validated by comparing it with the related design code provisions. As a result, it was confirmed that the method generally shows a similar tendency to the experimental results when the shear reinforcing bar yields, unlike the regulations of the design code, where differences in the predicted value of shear strength occur according to the shear reinforcement ratio.