DOI QR코드

DOI QR Code

Electrode bonding method and characteristic of high density rechargeable battery using induction heating system

유도 가열 접합 시스템을 이용한 대용량 이차전지 전극의 접합 방법 및 특성

  • Kim, Eun-Min (Research and Development Team, Sangyoung Research and New Development) ;
  • Kim, Shin-Hyo (Research and Development Team, Korea Ship Safety Technology Authority) ;
  • Hong, Won-Hee (Shinhwa Industry Hi-Tech Co. LTD.) ;
  • Cho, Dae-Kweon (Research and Development Team, Sangyoung Research and New Development, Kyungnam College of Information)
  • Received : 2014.03.04
  • Accepted : 2014.07.24
  • Published : 2014.07.31

Abstract

In this study, electrode bonding technology needed for high density of rechargeable battery is studied, which is recently researched for electric vehicle, the small leisure vessel. For the alternative overcoming the limit of stacking amount able to be stacked by conventional ultrasonic welding, the low temperature bonding method, eligible for minimum of degeneration of chemical activator on the electrode surface which is generated by thermal effect as well as the increase of conductivity and tension strength caused by electrode bonding using filler metal, not using conventional direct heating on the electrode material method, is studied. Specifically to say, recently used more generally the ultrasonic welding and spot welding method are not usable for satisfying stable electric conductivity and bonding strength when much electrode is stacking bonded. If the electrical power is unreasonably increased for the welding, due to the effect of welding temperature, deformation of electrode and activating material degeneration are caused, and after the last packaging, decline of electrical output and generating heat cause to reduce stability of battery. Therefore, in this study, induction heating system bonding method using high frequency heating and differentiated electrode method using filler metal pre-treatment of hot dipping are introduced.

본 연구에서는 최근, 전기자동차 및 소형 레저용 선박을 중심으로 연구가 진행 중인, 대용량 이차전지의 용량 증대를 위하여 필요한 내부 전극 접합 기술에 관하여 연구하였다. 종래의 초음파 용접으로 적층할 수 있는 적층 량의 한계를 극복하기 위한 방안으로 전극 소재에 직접 가열을 통한 용접 방법이 아닌 용가재 금속을 적용하여 전극을 접합시켜, 통전성과 인장강도를 증대시킴과 동시에 열적요인으로 인한 전극표면에 화학적 활성물질의 변성을 최소화 할 수 있는 저온 접합 방법에 대하여 연구하였다. 부연하여 현재 일반적으로 적용되고 있는 초음파 용접 및 저항 용접은 전극을 다량 적층 접합 시켰을 경우 일정한 전기 전도성과 접합 강도를 구현하기 힘들다. 용접을 위하여 무리하게 출력을 상승시킬 경우 용접열의 영향으로 전극의 변형 및 활성물질의 변성을 야기함과 동시에 최종 페키징(packaging) 이후 출력저하, 발열 등, 배터리의 안정성을 저하시키는 요인으로 작용한다. 따라서 본 연구에서는 고주파 유도가열을 통한 유도 가열 방식의 접합 방법과 용융 도금을 통한 용가재 금속의 전처리를 통한 종래와는 차별화된 전극접합 방법을 소개한다.

Keywords

References

  1. C. S. Jin, "Large energy storage battery", Korea Investment Corporation News, vo1. 3, p. 23, 2010 (in Korean).
  2. M. Jo, D. B. Na, and S. W. Kim, "Trends in lithium-ion battery technology for electric cars" Energy Engineering, vol. 20, no. 2, pp. 109-122, 2011. https://doi.org/10.5855/ENERGY.2011.20.2.109
  3. N. S. Kim, Y. T. Lim, and J. T. Jin, Manufacturing Processes for Engineering Materials, Pearson Education Korea 3th ed., Seoul, Korea, pp. 769-772, 2007 (in Korean).
  4. Smith and H. B. Han, Structure and Properties of Engineering Alloys, Ko-Bo. 4th ed., Seoul, Korea, pp. 242-243, 2010.
  5. David A. poter, Kenneth E. easterling, and Mohamed Y. sherif, Phase Transformation in Metals and Alloys London, Uk Garland Science 3nd ed., London, UK, Garland Science, pp. 213-217, 2010.
  6. H. Schumann and H. Oettel, Metallografie, 14th ed, Weinheim, Germany Wiley-VCH, pp. 496-497, 2005.
  7. C. K. Ji and K. O. Kim, "Secondary lithium-ion cells for the propulsion of electric road vehicles" Korea, Standards, KS C IEC-62660 12. 16, 2010 (in Korean).
  8. C. K. Ji and K. O. Kim, "Fixed resistors for use in electronic equipment" Korea, Standards, KS C IEC- 60115 07. 21, 2008 (in Korean).
  9. C. K. Ji and K. O. Kim, "Definitions for miniature fuses and general requirments for miniature fuse-links" Korea, Standards, KS C IEC- 60127 02. 07, 2005 (in Korean).
  10. James M. Gere and Barry J. Goodno, Mechanics of Materials, Cengage Learning Korea 7th ed., Seoul, Korea, pp. 15-21, 2011.
  11. A. Ohno, "The solidification of metals" Tokyo, Japan Chijin Shokan Co. LTD. pp. 16-20, 1976.
  12. J. K. Kim, Microscope Metallography, Nodemedia, Seoul, Korea, pp. 441-449, 2012 (in Korean).
  13. Y. G. Ko, C. W. Lee, N. K. Soong, D. H. Lee, and D. H. Sin, "Mechanical and electrical responses of submicrocrystalline Cu-3%Ag alloy" The Korean Society For Technology of Plasticity, vol. 18, no. 6, pp. 476-481, 2009 (in Korean).
  14. G. E. Dieter, Mechanical Metallurgy, McGraw - Hill 3th ed., New York, USA, pp. 72-119, 1990.
  15. Charles A. Harper, Electronic Materials and Processes Handbook, New York, USA, McGraw-Hill, pp. 4.1-4.71, 2010.