• Title/Summary/Keyword: direct stiffness method

Search Result 183, Processing Time 0.027 seconds

Estimation of elevated tanks natural period considering fluid- structure- soil interaction by using new approaches

  • Maedeh, Pouyan Abbasi;Ghanbari, Ali;Wu, Wei
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.145-152
    • /
    • 2017
  • The analytical method is used to develop new models for an elevated tank to estimate its natural period. The equivalent mass- spring method is used to configure the developed analytical models. Also direct method is used for numerical verification. The current study shows that developed models can have a good estimation of natural period compared with concluded results of finite elements. Additional results show that, the dependency of impulsive period to soil stiffness condition is higher than convective period. Furthermore results show that considering the fluid- structure- soil interaction has remarkable effects on natural impulsive and convective periods in case of hard to very soft soil.

Structural Optimization Using Stochastic Finite Element Second-Order Perturbation Method (확률 유한요소 이차섭동법을 사용한 구조물 최적설계)

  • 임오강;이병우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1822-1831
    • /
    • 1995
  • A general formulation of the design optimization problem with the random parameters is presented here. The formulation is based on the stochastic finite element second-order perturbation method ; it takes into full account of the stress and displacement constraints together with the rates of change of the random variables. A method of direct differentiation for calculating the sensitivity coefficients in regard to the governing equation and the second-order perturbed equation is derived. A gradient-based nonlinear programming technique is used to solve the problem. The numerical results are specifically noted, where the stiffness parameter and external load are treated as random variables.

A Study on the Displacement Measuring Method of High-rise Buildingas using LiDAR (라이다를 이용한 고층 건물의 변위 계측 기법에 관한 연구)

  • Lee Hong-Min;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.151-158
    • /
    • 2006
  • Structural health monitoring is concerned with the safety and serviceability of the users of structures, especially for the case of building structures and infrastructures. When considering the safety of a structure, the maximum stress in a member due to live load, earthquake, wind, or other unexpected loadings must be checked not to exceed the stress specified in a code. It will not fail at yield, excessively large displacements will deteriorate the serviceability of a structure. To guarantee the safety and serviceability of structures, the maximum displacement in a structures must be monitored because actual displacement is a direct assessment index on its stiffness. However, no practical method has been reported to monitor the displacement, especially for the case of displacement of high-rise buildings because of not to easy accessive. In this paper, it is studied displacement measuring method of high-rise buildings using LiDAR The method is evaluated by analyzing accuracy of measured displacements for existing building.

  • PDF

Development of Helical Rod Finite Element for the Dynamic Analysis of Cylindrical Springs (원통형 스프링의 동특성 해석을 위한 헬리컬 로드 유한요소 개발)

  • 김도중;이덕영
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.544-553
    • /
    • 1999
  • A 3-dimensional helical rod finite element is devloped for the dynamic analysis of cylindrical springs. Element matrices are formulated using the Galerkin's method, and an exact static deflection curve is used as a shape function. Because the resultant mass and stiffness matrices of the model are symmetric, effective direct solution method can easily be applied for analysing dynamic behavior of springs. The model is used to analyze the dynamic characteristics of a typical automotive valve spring. The effectiveness of the developed helical rod element is verified by comparing the results of the proposed method with those of a classical theory and experiments. The helical element developed in this study is superior to a straight beam element and a 2-dimensional curved beam element for this problem.

  • PDF

Experimental Evaluation of Direct Measurement for Excitation Forces Acting on the Hard-points of Suspension System to Predict Road-noise Performance (로드노이즈 성능 예측을 위한 현가장치 하드포인트의 가진력 직접 측정법에 대한 실험적 평가)

  • Kang, Yeon June;Kim, Heesoo;Song, David P.;Ih, Kang-Duck;Kim, HyoungGun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.3
    • /
    • pp.184-190
    • /
    • 2015
  • NVH engineering has become a hot issue due to radical technology changes and development in automotive industry since customers' expectations and needs for their vehicle is taken to a higher level. However, the source identification and quantification of the road noise within a vehicle is still not at the level where it needs to be to meet their expectations due to its' complex transfer path and difficulties in path optimization. The primary focus of this research is on direct force obtaining method at suspension hard points using suspension test rig. Directly obtained forces at suspension to body mounting points are critical and crucial for determining the effects of design changes of the suspension has on road noise performance. Direct force obtaining method has its limitation in sensor installation within an actual vehicle therefore, many has been indirectly calculating forces using full matrix inversion method or dynamic stiffness method. In this study, to circumvent this limitation, a suspension rig is used. Then, the suspension rig is verified through a comparative analysis of its dynamic behavior between the actual vehicle by cleat test on chassis dynamometer.

A Study on the Dynamic Characteristics of Axial Vibration Damper for Two Stroke Low Speed Diesel Engine (저속 2행정 디젤엔진의 종진동 댐퍼 동특성에 관한 연구)

  • 이돈출;김정렬;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.113-121
    • /
    • 1994
  • Since two oil shocks in 1970s, all of engine makers have persevered in their efforts to reduce specific fuel consumption and to increase engine power rate as much as possible in marine diesel engines. As a result, the maximum pressure in cylinders of these engines has been continuously increased. It causes direct axial vibration. The axial stiffness of crank shaft is low compared to old types of engine models by increasing the stroke/bore ratio and its major critical speed might occur within engine operation range. An axial damper, therefore, needs to be installed in order to reduce the axial vibration amplitude of the crankshaft. Usually the main critical speed of axial vibration for the propulsion shafting system with a 4-8 cylinder engine exists near the maximum continuous revolution(MCR). In this case, when the damping coefficient of the damper is increased within the allowance of the structural strength, its stiffness coefficient is also increased. Therefore, the main critical speed of axial vibration can be moved beyond the MCR. It has the same function as a conventional detuner. However, in the case of a 9-12 cylinder engine, the main critical speed of axial vibration for the propulsion shafting system exists below the MCR and thus the critical speed cannot be moved beyond the MCR by using an axial damper. In this case, the damping coefficient of an axial damper should be adjusted by considering the range of engine revolution, the location and vibration amplitude of the critical speed, the fore and aft vibration of the hull super structure. It needs to clarify the dynamic characteristics of the axial vibration damper to control the axial vibration appropriately. Therefore authors suggest the calculation method to analyse the dynamic characteristics of axial vibration damper. To confirm the calculation method proposed in this paper, it is applied to the propulsion shafting system of the actual ships and satisfactory results are obtained.

  • PDF

Saw-tooth softening/stiffening - a stable computational procedure for RC structures

  • Rots, Jan G.;Invernizzi, Stefano;Belletti, Beatrice
    • Computers and Concrete
    • /
    • v.3 no.4
    • /
    • pp.213-233
    • /
    • 2006
  • Over the past years techniques for non-linear analysis have been enhanced significantly via improved solution procedures, extended finite element techniques and increased robustness of constitutive models. Nevertheless, problems remain, especially for real world structures of softening materials like concrete. The softening gives negative stiffness and risk of bifurcations due to multiple cracks that compete to survive. Incremental-iterative techniques have difficulties in selecting and handling the local peaks and snap-backs. In this contribution, an alternative method is proposed. The softening diagram of negative slope is replaced by a saw-tooth diagram of positive slopes. The incremental-iterative Newton method is replaced by a series of linear analyses using a special scaling technique with subsequent stiffness/strength reduction per critical element. It is shown that this event-by-event strategy is robust and reliable. First, the model is shown to be objective with respect to mesh refinement. Next, the example of a large-scale dog-bone specimen in direct tension is analyzed using an isotropic version of the saw-tooth model. The model is capable of automatically providing the snap-back response. Subsequently, the saw-tooth model is extended to include anisotropy for fixed crack directions to accommodate both tensile cracking and compression strut action for reinforced concrete. Three different reinforced concrete structures are analyzed, a tension-pull specimen, a slender beam and a slab. In all cases, the model naturally provides the local peaks and snap-backs associated with the subsequent development of primary cracks starting from the rebar. The secant saw-tooth stiffness is always positive and the analysis always 'converges'. Bifurcations are prevented due to the scaling technique.

Spring Modeling for the Passive Earth Pressure Acting on the Integral Abutment Bridge (일체식교대 교량에 작용하는 수동토압의 스프링 모델링)

  • 정재호;홍정희;유성근;윤순종
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.420-427
    • /
    • 2002
  • In this paper, a simplified structural spring model of integral abutment bridge is proposed to account for the passive earth pressure due to the change of temperature. The magnitude of earth pressure acting on integral bridge abutment mainly depends on the amount and shape of displacement of abutment according to the thermal expansion of superstructure. The proposed simplified model is developed based on the possible displacement shape of integral abutment bridge. Performing the direct stiffness method, the analysis is done by using the proposed method and the results of new model is compared with those of conventional design approach. The study show that it may be possible to obtain more rational and economical design values for integral abutment bridge by applying the proposed design method.

  • PDF

Direct Inelastic Design for Steel Structures (강구조를 위한 직접비탄성설계법)

  • Eom, Tae Sung;Park, Hong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.181-190
    • /
    • 2004
  • A new inelastic design method performing iterative calculations using secant stiffness was developed. Since the proposed design method uses linear analysis, it is convenient and stable in numerical analysis. At the same time, the proposed design method can accurately estimate the inelastic strength and ductility demands of the members by performing iterative calculation. In the present study, the procedure of the proposed design method was established. Design examples using the proposed method were presented, and its advantages were highlighted by comparisons with existing design methods using elastic or plastic analysis. Unlike the existing inelastic design methods performing the preliminary design on the structure and checking its validity using nonlinear analysis, the proposed integrated analysis-design method can directly calculate the strength and ductility demands of each member. In addition, the proposed design method can address the inelastic design strategy intended by the engineer, such as strength and ductility limits of members and the design concept of strong-column and weak-beam. As a result, economical and safe design can be achieved.

Numerical Study on Estimation of Static Configuration of Steel Lazy Wave Riser Using Dynamic Relaxation Method (동적이완법을 이용한 Steel Lazy Wave Riser의 정적형상 추정에 관한 수치해석적 연구)

  • Oh, Seunghoon;Jung, Jae-Hwan;Park, Byeongwon;Kwon, Yong-Ju;Jung, Dongho
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.466-473
    • /
    • 2018
  • This paper presents an estimation method for the static configuration of a steel lazy wave riser (SLWR) using the dynamic relaxation method applied to estimate the configuration of structures with strong geometric non-linearity. The lumped mass model is introduced to reflect the flexible structural characteristics of the riser. In the lumped mass model, the tensions, shear forces, buoyancy, self-weights, and seabed reaction forces at nodal points are considered in order to find the static configuration of the SLWR. The dynamic relaxation method using a viscous damping formulation is applied to the static configuration analysis. Fictitious masses are defined at nodal points using the sum of the largest direct stiffness values of nodal points to ensure the numerical stability. Various case studies were performed according to the bending stiffness and size of the buoyancy module using the dynamic relaxation method. OrcaFlex was employed to validate the accuracy of the developed numerical method.