• Title/Summary/Keyword: direct power control

Search Result 743, Processing Time 0.03 seconds

Direct Load Control Algorithm Based Locational and Electric Load Characteristics (지역적 특성과 부하특성을 고려한 직접부하제어 알고리즘)

  • Shin, Ho-Sung;Song, Kyung-Bin;Moon, Jong-Fil;Kim, Jae-Chul;Nam, Bong-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.264-265
    • /
    • 2006
  • This paper presents direct load control algorithm based locational and electric load characteristics. Direct load control is defined that demand-side management program activities that can interrupt consumer load at the time of annual peak load by direct control of the utility system operator by interruption power supply to individual appliances or equipment on consumer premises. Korean power system is divided into 14-areas considering branches operating in KEPCO, and electric loads are classified into 19 load groups considering interruption costs in this paper. The purpose of proposed method is to decrease social losses by controlling electric loads mainly whose interruption costs are low. It is expected that the proposed algorithm can be used as the countermeasure for the emergency state of the electric power dispatch in a operation point of view.

  • PDF

Direct Power Sensorless Control of Three-Phase AC/DC PFC PWM Converter using Virtual Flux Observer (가상 자속관측기를 이용한 3상 AC/DC PFC PWM 컨버터의 직접 전력 센서리스 제어)

  • Kim, Young-Sam;Kwon, Young-Ahn
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1442-1447
    • /
    • 2012
  • In this paper, direct power control system for three-phase PWM AC/DC converter without the source voltage sensors is proposed. The sinusoidal input current and unity effective power factor are realised based on the estimated flux in the observer. Both active and reactive power calculated using estimated flux. The estimation of flux is performed based on the Reduced-order flux observer using the actual currents and the command control voltage. The source voltage sensors are replaced by a flux estimator. The active and reactive powers estimation are performed based on the estimated flux and Phase anble. The proposed algorithm is verified through simulation and experiment.

A Hydraulic-Oil Pump System using SR Drive with a Direct Torque Control Scheme

  • Lee, Dong-Hee;Kim, Tae-Hyoung;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.491-498
    • /
    • 2009
  • The hydraulic-oil pump is widely used for building machinery, brake systems of vehicles and automatic control systems due to its high dynamic force and smooth linear force control performance. This paper presents a novel direct instantaneous pressure control of the hydraulic pump system with SRM drive. The proposed hydraulic pump system embeds the pressure controller and direct instantaneous torque controller. Due to the proportional relationship between pump pressure and torque, pressure can be controlled by the motor torque directly. The proposed direct torque controller can reduce inherent torque ripple of SRM, and develop a smooth torque, which can increase the stability of the hydraulic pump. The proposed hydraulic pump system has also fast step response and load response. The proposed hydraulic pump system is verified by computer simulation and experimental results.

Series Active Power Filters to Compensate Harmonics and Reactive Power with the Direct Compensating Voltage Extraction Method in Three-Phase Four-Wire Systems

  • Kim, Jin-Sun;Kim, Young-Seok
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.691-699
    • /
    • 2009
  • This paper presents the analysis of series active power filter for reactive power compensation, load balancing, harmonic elimination, and neutral current eradication in three-phase four-wire power systems. Generally, the three-phase four-wire system is widely employed in distributing electric energy to several office building and manufacturing plants. In such systems, the third harmonic and its 3rd harmonics are termed as triple and zero sequence components that do not cancel each other in the system neutral. Consequently, the triple harmonics add together creating a primary source of excessive neutral current. Regarding this concern, this paper presents a new control algorithm for a series hybrid active system, whereas the control approach it adopts directly influence its compensation characteristics. Hence, the advantage of this control algorithm is the direct extraction of compensation voltage reference without phase transformations and multiplying harmonic current value by gain and the required rating of the series active filter is much smaller than that of a conventional shunt active power filter. In order to show the effectiveness of the proposed control algorithm, experiments have been carried out.

Direct Power Control Scheme of Improved Command Tracking Capability for PMSG MV Wind turbines

  • Kwon, Gookmin;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.361-362
    • /
    • 2015
  • This paper proposes a Direct Power Control (DPC) scheme of improved command tracking capability for Permanent Magnet Synchronous Generator (PMSG) Medium Voltage (MV) Wind Turbines. Benchmarking is performed based on a neutral point clamped three-level back-to-back type voltage source converter. It is introduced to design the DPC modeling and propose DPC scheme of a three-level NPC (3L-NPC) converter. During the fault condition in wind farms, the proposed control scheme directly controls the generated output power to the command value from the hierarchical wind farm controller. The proposed control scheme is compared with conventional control scheme as respect to loss and thermal analysis. The DPC scheme of improved command tracking capability is confirmed through PLECS simulations. Simulation result shows that proposed control scheme achieves a much shorter transient time in a step response of generated output power. The proposed control scheme makes it possible to provide a good dynamic performance for PMSG MV wind turbine to generate a high quality output power under grid fault condition.

  • PDF

A Hybrid DTC-DSC Drive for High Performance Induction Motor Control

  • Jidin, Auzani;Idris, Nik Rumzi Nik;Yatim, Abdul Halim Mohamed;Sutikno, Tole;Elbuluk, Malik E.
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.704-712
    • /
    • 2011
  • This paper describes a hybrid induction motor drive system incorporating DTC-hysteresis and Direct Self Control (DSC) schemes to achieve excellent dynamic performance. The control scheme is switched from a circular to a hexagonal flux locus whenever a dynamic condition is encountered. On the other hand, when the motor operates under steady state conditions, a circular flux locus is used. Without major modifications to the simple structure of a basic DTC, hexagonal flux locus operation is established by modifying the flux error status, before it is fed to the look-up table. The feasibility of the proposed hybrid scheme to achieve excellent control performance is verified by experimental results.

POWER LOAD MANAGEMENT FOR PEAK LOAD CLIPPING (POWER LOAD DIRECT CONTROL METHOD) (Peak부하(負荷) 억제(抑制)를 위한 전력부하관리(電力負荷管理) (전력부하(電力負荷) 직접제어방식(直接制御方式)))

  • Kim, Yeong-Han;Lee, Hyo-Sang;Kim, Jai-Young
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.246-250
    • /
    • 1989
  • Owing to the rapid development of economy and the higher living standard of people, electricity demands have growth and the peak load has been increased rapidly. To cope with this impacts and to reduce the cost of service,utilities are conserned about power load management program. This paper shows a scheme of power load control and the basic structure of direct load control system. And also radio control method using the public pager which is one of the best economical and serviceable method in techniques will be introduced briefly.

  • PDF

LVRT control of Grid-Connected Wind Turbine Using Sliding-Mode Based Direct Power Control (슬라이딩 모드 기반의 직접전력제어를 이용한 계통연계형 풍력발전 시스템의 LVRT 제어)

  • Jeong, Hae-Gwang;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.396-404
    • /
    • 2011
  • This paper proposes a performance improvement of a grid-connected wind turbine using sliding-mode based direct power control under an unbalanced grid fault. The proposed control method has some advantages for grid connected control. At first, it doesn't need the synchronous phase angle of the grid voltage. It has also fast dynamic characteristics compared with a conventional current controller. In addition, it is suitable for an unbalance compensation control. The effectiveness and robustness of the proposed algorithm are verified by simulations and experiments.

Improved Active Power Filter Performance Based on an Indirect Current Control Technique

  • Adel, Mohamed;Zaid, Sherif;Mahgoub, Osama
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.931-937
    • /
    • 2011
  • This paper presents a method for the performance improvement of a shunt active power filter (SAPF) using the indirect current control (ICC) scheme. Compared to the conventional direct current control (DCC) scheme, the ICC gives better performance with a lower number of sensors. A simplified and efficient control algorithm using a low cost Intel 80C196KC microcontroller is implemented using only two current sensors for the source current and one voltage sensor for the DC-link voltage of the SAPF circuit. The objective is to eliminate harmonics and to compensate the reactive power produced by non-linear loads such as an uncontrolled rectifier feeding an inductive load. The APF is realized using a three phase voltage source inverter (VSI) with a dc bus capacitor. Experimental results are presented to prove the better performance of the ICC method over the DCC one.

Direct Power Control of PMa-SynRG with Back-to-back PWM Voltage-fed Drive

  • Baek, Jeihoon;Kwak, Sangshin
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.761-768
    • /
    • 2018
  • In this paper, the performance analysis of a control topology based on the direct output power control (DPC) for robust and inexpensive permanent magnet-assisted synchronous reluctance generator (PMa-SynRG) system is presented. The PMa-SynRG might be coupled to an internal combustion engine running at variable speed. A three-phase PWM rectifier rectifies the generator output and supplies the dc link. A single-phase PWM inverter supplies constant ac voltage at constant frequency to the grid. The overall control algorithm is implemented on a TMS320F2812 digital signal processor board. Simulations results and experimental results verify the operation of the proposed system.