• Title/Summary/Keyword: direct osmosis

Search Result 18, Processing Time 0.024 seconds

Characteristics of Reverse Flux by using Direct Omosis in RO Membrane Process (역삼투막 공정에서 Direct Osmosis의 역방향 Flux 기초특성)

  • Kang, Il-Mo;Dock-Ko, Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.399-405
    • /
    • 2011
  • In a desalination technology using RO membranes, chemical cleaning makes damage for membrane surface and membrane life be shortened. In this research cleaning technology using direct osmosis (DO) was introduced to apply it under the condition of high pH and high concentration of feed. When the high concentration of feed is injected to the concentrate side after release of operating pressure, then backward flow occurred from treated water toward concentrated for osmotic pressure. This flow reduces fouling on the membrane surface. Namely, flux of DO was monitored under pH 3, 5, 10 and 12 conditions at feed concentrations of NaCl 40,000 mg/L, 120,000 mg/L and 160,000 mg/L. As a result, DO flux in pH 12 increased about 21% than pH 3. DO cleaning was performed under the concentrate NaCl 160,000 mg/L of pH 12 during 20 minutes. Three kinds of synthetic feed water were used as concentrates. They consisted of organic, inorganic and seawater; chemicals of SiO2 (200 mg/L), humic acid (50 mg/L) sodium alginate (50 mg/L) and seawater. As a result, fluxes were recovered to 17% in organic fouling, 15% in inorganic fouling and 14% of seawater fouling after cleaning using DO under the condition of concentrate NaCl 160,000 mg/L of pH 12.

Application of Microfiltration and Reverse Osmosis System to Sewage Reuse for Industrial Water (하수를 공업용수로 재이용하기 위한 정밀여과 및 역삼투 시스템 적용에 관한 연구)

  • 강신경;이해군;김지원
    • Membrane Journal
    • /
    • v.12 no.3
    • /
    • pp.151-157
    • /
    • 2002
  • This research was to demonstrate the Possibility of sewage reuse for industrial purpose with use of membrane system. A bench scale test with microfiltration and reverse osmosis showed that microfiltration in the sewage treatment was not able to remove the soluble salts but 70% suspended solids (SS), suggesting that the treated water could be used as direct cooling water. In addition, the reverse osmosis removed not only soluble salts but also 95% SS, proposing that reverse osmosis-treated water could be used as both indirect cooling water and rinsing water. For a 100 ton/day pilot plant, 20 and 12 elements of microfiltration and reverse osmosis were required, respectively.

Design of Loss-reduction Mechanisms for Energy Recovery Devices in Reverse-osmosis Desalination systems (역삼투 담수시스템용 에너지회수장치의 손실극복 메커니즘 설계)

  • Ham, Y.B.;Kim, Y.;Noh, J.H.;Shin, S.S.;Park, J.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.5-9
    • /
    • 2012
  • Novel mechanisms for Energy Recovery Devices are proposed to diminish the pressure loss in the high-pressure reverse-osmosis system. In the beginning, the state-of-the-art in the design of Energy Recovery Devices is reviewed and the features of each model are investigated. The direct-coupled axial piston pump(APP) and axial piston motor(APM) showed 39% energy recovery at operating pressure of reverse osmosis desalination systems, 60 bar. Meanwhile, the developed PM2D model, in which APM pistons are arranged parallel to those of APP, is more compact and showed higher efficiency in a preliminary test. Loss-reduction mechanisms employing rod piston and double raw valve port are additionally proposed to enhance the efficiency and durability of the device.

Effect of Salt Concentration and Temperature in Synthetic Dyestuff Wastewater Treatment using Plate and Frame Membrane Module (평판형 막모듈을 이용한 합성염료 폐수처리에 있어서 염농도 및 온도의 영향)

  • Kim, Sun-Il;Lee, Bong-Woo;Yun, Young-Jae
    • Journal of Environmental Science International
    • /
    • v.7 no.2
    • /
    • pp.209-216
    • /
    • 1998
  • Nanofiltration[NF45] and reverse osmosis membrane(HR98PP) separation treatment of dyestuff wastewater was carried out In order to separate relatively pure water from synthetic dyestuff wastewater, which consists of reactive dye, acid dye, basic dye, direct dye, and disperse dye. The experiments were performed by using the plate and frame membrane module. In the nanofiltration and reverse osmosis membrane separation, When the NaCl concentration was 0.1, 5.0, and 20.091, retention was 63.0, 46.0, 0.9%, respectively. When permeate flux was 125.0, 67.5, and 45.0 L/$m^2$ h, the osmotic pressure increased with Increasing the NaCl concentration. Permeate flux of two membranes Increased as temperature Increased due to segmental movement of polymer of the membrane and the rejection rate of dyestuff was decreased gradually. It was found that the rejection rate was about 95% in the nanofiltratlon, while the reverse osmosis membrane showed a high rejection rate of 99% under all temperature and pressures conditions.

  • PDF

Seawater-driven forward osmosis for direct treatment of municipal wastewater

  • Sun, Yan;Bai, Yang;Tian, Jiayu;Gao, Shanshan;Zhao, Zhiwei;Cui, Fuyi
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.449-462
    • /
    • 2017
  • Direct treatment of municipal wastewater by forward osmosis (FO) process was evaluated in terms of water flux decline, reverse salt diffusion, pollutants rejection and concentration efficiency by using synthetic seawater as the draw solution. It was found that when operating in PRO mode (active layer facing the draw solution), although the FO membrane exhibited higher osmotic water flux, more severe flux decline and reverse salt diffusion was also observed due to the more severe fouling of pollutants in the membrane support layer and accompanied fouling enhanced concentration polarization. In addition, although the water flux decline was shown to be lower for the FO mode (active layer facing the feed solution), irreversible membrane fouling was identified in both PRO and FO modes as the water flux cannot be restored to the initial value by physical flushing, highlighting the necessity of chemical cleaning in long-term operation. During the 7 cycles of filtration conducted in the experiments, the FO membrane exhibited considerably high rejection for TOC, COD, TP and $NH_4{^+}-N$ present in the wastewater. By optimizing the volume ratio of seawater draw solution/wastewater feed solution, a concentration factor of 3.1 and 3.7 was obtained for the FO and PRO modes, respectively. The results demonstrated the validity of the FO process for direct treatment of municipal wastewater by using seawater as the draw solution, while facilitating the subsequent utilization of concentrated wastewater for bioenergy production, which may have special implications for the coastline areas.

Emerging membrane technologies developed in NUS for water reuse and desalination applications: membrane distillation and forward osmosis

  • Teoh, May May;Wang, Kai Yu;Bonyadi, Sina;Yang, Qian;Chung, Tai-Shung
    • Membrane and Water Treatment
    • /
    • v.2 no.1
    • /
    • pp.1-24
    • /
    • 2011
  • The deficiency of clean water is a major global concern because all the living creatures rely on the drinkable water for survival. On top of this, abundant of clean water supply is also necessary for household, metropolitan inhabitants, industry, and agriculture. Among many purification processes, advances in low-energy membrane separation technology appear to be the most effective solution for water crisis because membranes have been widely recognized as one of the most direct and feasible approaches for clean water production. The aim of this article is to give an overview of (1) two new emerging membrane technologies for water reuse and desalination by forward osmosis (FO) and membrane distillation (MD), and (2) the molecular engineering and development of highly permeable hollow fiber membranes, with polyvinylidene fluoride (PVDF) and polybenzimidazole (PBI) as the main focuses for the aforementioned applications in National University of Singapore (NUS). This article presents the main results of membrane module design, separation performance, membrane characteristics, chemical modification and spinning conditions to produce novel hollow fiber membranes for FO and MD applications. As two potential solutions, MD and FO may be synergistically combined to form a hybrid system as a sustainable alternative technology for fresh water production.

Reuse of treated wastewater from steel industry by reverse osmosis membrane: flux decline study

  • Kwon, Tea-Ouk;Lee, Jae-Wook;Moon, Il-Shik
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.199-202
    • /
    • 2004
  • Membrane technology is widely employed as a means of producing various qualities of water from surface water, well water, brackish water and seawater. This is also used in industrial wastewater treatment and its recycling process. A large volume of wastewater is generated by the steel industry. Presently, the treated wastewater from the steel industry cannot be recycled, because some of its components cause either direct or indirect problems.(omitted)

  • PDF

Economic Evaluation of Coupling APR1400 with a Desalination Plant in Saudi Arabia

  • Abdoelatef, M. Gomaa;Field, Robert M.;Lee, YongKwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.73-87
    • /
    • 2016
  • Combining power generation and water production by desalination is economically advantageous. Most desalination projects use fossil fuels as an energy source, and thus contribute to increased levels of greenhouse gases. Environmental concerns have spurred researchers to find new sources of energy for desalination plants. The coupling of nuclear power production with desalination is one of the best options to achieve growth with lower environmental impact. In this paper, we will per-form a sensitivity study of coupling nuclear power to various combinations of desalination technology: {1} thermal (MSF [Multi-Stage Flashing], MED [Multi-Effect Distillation], and MED-TVC [Multi-Effect Distillation with Thermal Vapour Compression]); {2} membrane RO [Reverse Osmosis]; and {3} hybrid (MSF-RO [Multi-Stage Flashing & Reverse Osmosis] and MED-RO [Multi-Effect Distillation & Reverse Osmosis]). The Korean designed reactor plant, the APR1400 will be modeled as the energy production facility. The economical evaluation will then be executed using the computer program DEEP (Desalination Economic Evaluation Program) as developed by the IAEA. The program has capabilities to model several types of nuclear and fossil power plants, nuclear and fossil heat sources, and thermal distillation and membrane desalination technologies. The output of DEEP includes levelized water and power costs, breakdowns of cost components, energy consumption, and net saleable power for any selected option. In this study, we will examine the APR1400 coupled with a desalination power plant in the Kingdom of Saudi Arabia (KSA) as a prototypical example. The KSA currently has approximately 20% of the installed worldwide capacity for seawater desalination. Utilities such as power and water are constructed and run by the government. Per state practice, economic evaluation for these utilities do not consider or apply interest or carrying cost. Therefore, in this paper the evaluation results will be based on two scenarios. The first one assumes the water utility is under direct government control and in this case the interest and discount rate will be set to zero. The second scenario will assume that the water utility is controlled by a private enterprise and in this case we will consider different values of interest and discount rates (4%, 8%, & 12%).

Ions Removal of Contaminated Water with Radioactive Ions by Reverse Osmosis Membrane Process (방사성이온으로 오염된 물의 역삼투막공정을 이용한 이온제거)

  • Shin, Do Hyoung;Cheong, Seong Ihl;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.26 no.5
    • /
    • pp.401-406
    • /
    • 2016
  • In this study, we have investigated the removal of the low level radioactive ions of Cs and I in water by the reverse osmosis (RO) process. The two RO modules produced in domestic region and the waste RO module after the cleaning process were selected. Then we compared removal performance of both Cs and I. The experiments are conducted by varying the concentration of feed, the pressure. As a results, it was confirmed that all three modules are higher I decontamination factor than Cs. And particularly, for the cleaned RO module, its decontamination factor of I was 1140. Since the results at low pressure condition were better than that at high pressure conditions, the use of the direct installation of RO modules on the tap water might be possible. In addition, it was confirmed that the waste RO module after cleaning process using EDTA, SBS and NaOH, increased the decontamination performance better than before cleaning, in particular, the recovery ratio after cleaning was 6.3% higher.

Investigation of Factors Influencing Methanol Crossover in Direct Methanol Fuel Cell (직접메탄올연료전지에서 메탄올 크로스오버에 미치는 인자 연구)

  • Hyun, Min-Soo;Kim, Sang-Kyung;Lim, Seong-Yop;Lee, Byung-Rock;Peck, Dong-Hyun;Jung, Doo-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.6-10
    • /
    • 2008
  • The amount of methanol crossover was measured with changing the operating condition by using a liquid methanol concentration sensor. Appropriate operating condition was discussed in terms of methanol crossover. Mechanism of methanol crossover was classified into three items which are diffusion, convection and electro-osmosis. Contribution of each mechanism to methanol crossover and the effect of operating condition were analyzed with varying methanol concentration, pressure difference between anode and cathode, current, temperature, and stoichiometry of anode fuel. Among the three mechanisms diffusion affected mostly and electro-osmosis effect was observed only under high methanol concentration.