• 제목/요약/키워드: direct nitriding method

검색결과 6건 처리시간 0.021초

규석광으로부터 직접 질화법에 의한 질화규소의 합성 (Synthesis of Si3N4 from Domestic Silica-stone by Direct Nitriding Method)

  • 손용운;주성민;정헌생
    • 한국재료학회지
    • /
    • 제14권5호
    • /
    • pp.358-362
    • /
    • 2004
  • $Si_3$$N_4$ ceramics have been identified as one of the promising structural ceramics. This study has been carried out to investigate of the synthetic behaviors of $Si_3$$N_4$ derived from domestic silica-stone by direct nitriding method. The silicon nitridation reaction has been studied in the temperature range of $1300~1550^{\circ}C$. Below the $1400^{\circ}C$, the nitriding rate was measured to be 16%. For the temperatures higher than the $1400^{\circ}C$, $\beta$-$Si_3$$N_4$ phase was formed mainly, and the nitriding rate showed above 98%. With the increasing of sample weight of silicon powder, the nitriding rate and $\beta$-$Si_3$$N_4$ phase increased at $1400^{\circ}C$ for 2 hours. The shape and particle size of$ Si_3$$N_4$ powder synthesized at $1400^{\circ}C$ for 2 hours showed the irregular angular-type and 10 $\mu\textrm{m}$, respectively.

직접질화법에 의한 (Ti,Al)N계 복합질화물의 합성(II) (Synthesis of (Ti,Al)N Powder by the Direct Nitridation(II))

  • 조영수;이영기;손용운;박경호;김석윤
    • 열처리공학회지
    • /
    • 제9권3호
    • /
    • pp.219-227
    • /
    • 1996
  • The purpose of this research is to develop the technology for the synthesis of (Ti,Al)N powder, which shows simultaneously the excellent properties of TiN and AlN, from the Ti-Al intermetallic compounds by the direct nitriding method. The effects of variables such as temperature, Ti-Al intermetallic compounds ($TiAl_3$, TiAl and $Ti_3Al$) were investigated by TG, XRD and SEM. The (Ti,Al)N powder can be easily synthesized from the intermetallic compounds by the direct nitriding method. Among the intermetallic compounds, the nitriding behavior increased with TiAl> $Ti_3Al$ > $TiAl_3$, as the difference of diffusion coefficient for nitrogen in each materials. The ternary nitride such as $Ti_2AlN$ and $Ti_3Al_2N_2$ can be synthesized by the direct nitriding method, although the ternary nitride coexist with TiN and AlN. The ternary nitrides are stable below $1400^{\circ}C$, but these are gradually decomposed into TiN and AlN above $1400^{\circ}C$.

  • PDF

직접질화법에 의한(Ti, Al)N계 복합질화물의 합성(I) (Syntheses of(Ti, Al)N Powder by the Direct Nitridation (1))

  • 손용운;이영기;황연;조영수;김석윤
    • 열처리공학회지
    • /
    • 제8권3호
    • /
    • pp.187-196
    • /
    • 1995
  • TiN and AlN are ceramic materials with mechanical and chemical properties for use in structural applications at elevated temperature. The purpose of this research is to develop the technology for the synthesis of (Ti, Al)N power, which shows simultancously the excellent properties of TiN and AlN, from the mixed powder($Ti_{0.25}Al_{0.75}$, $Ti_{0.5}Al_{0.5}$ and $Ti_{0.75}Al_{0.25}$) by the direct nitriding method. The effects of variables such as temperature, mixing ratio of Al to Ti in raw material were investigated. The(Ti, Al)N powder can be easily synthesized from the mixed powder by the direct nitriding method. Among the mixed powdres, the nitriding behavior decreased with increasing the ratio of Al to Ti. This behavior is well explained by the nitriding mechanism presented in this research.

  • PDF

Effects of Magnesium Catalyst on the Nitridation of Aluminum Melt in the Synthesis of Aluminum Nitride Powder

  • Kim, Hyo-Jin;Kim, Sung-Hun;Lim, Sung-Min;Seo, Jong-Hyun;Lee, Kon-Bae;Lee, Jae-Chul;Ahn, Jae-Pyoung
    • Applied Microscopy
    • /
    • 제44권2호
    • /
    • pp.79-82
    • /
    • 2014
  • Aluminum nitride (AlN) powder was easily synthesized by the direct nitridation of Al melt containing ~20 wt.% Mg catalyst and the nitriding behavior was investigated by thermodynamic calculation and through observations of electron microscopy and X-ray diffraction. The addition of Mg catalyst decreased the nitriding temperature below $1,000^{\circ}C$, which is comparable to the high nitriding temperature of $1,400^{\circ}C$ required in carbothermal method. It was caused by a significant increase of the solubility of nitrogen gas due to the increase of Mg catalyst in Al melt. The dissolved nitrogen gas met Mg catalyst and was transformed into metastable $Mg_3N_2$. Finally the metastable phase reacted with Al to AlN.

X-선 회절법에 의한 철-질소 화합물층의 ε과 γ'상 분율 해석 (Fraction Analysis of ε and γ'-iron Nitride in Compound Layer Using X-ray Diffraction)

  • 김윤기
    • 한국재료학회지
    • /
    • 제16권2호
    • /
    • pp.85-91
    • /
    • 2006
  • The fraction of $\varepsilon\;and\;\gamma$'-iron nitride in compound layer is predicted by x-ray diffraction using direct comparison method. The validity of formulation models was checked by comparing calculated results with metallographic analysis of iron nitride compound layer grown on steel S45C by gas nitriding. The fraction of $\varepsilon$ calculated by the three phase model, porous-$Fe_3N$/ dense-$Fe_3N$/ mixed layer with $Fe_3N\;and\;Fe_4N$, is 80 percent of that analyzed by etching technique. The $\varepsilon$ fraction predicted by mixed layer model is 122 percent of that measured by microscope.

(Ti1-xAlx)N계 질화물의 소결특성에 미치는 Co, Co-Ti 금속결합제의 영향 (Effects of Co-Ti Addition on the Sintering Characteristics of (Ti1-xAlx)N Ntride Powder)

  • 이영기;손용운
    • 열처리공학회지
    • /
    • 제11권3호
    • /
    • pp.177-185
    • /
    • 1998
  • The purpose of this research is to investigate the effects of Co, Co-Ti addition on the sintering characteristic of $(Ti_{1-x}Alx)N$ material synthesized by the direct nitriding method for a application as a cermet material. The observed shrinkage rates of $(Ti_{1-x}Alx)N$ pellets increase with the additive (Co, Co-Ti) content, temperature and time, and also the pellets with the same additive content exhibit the shrinkage behavior that depends on the Ti/Al ratio. However, although the shrinkage rates in this study is the mast higher (36%), the density of the sintered $(Ti_{1-x}Alx)N$ pellet is below 80% density in theory because of the partial segregation and the dense band defect of AlCo compound. Consequentely, it is considered that Co was not effective as a binder material because the wettability of liquid Co metal on $(Ti_{1-x}Alx)N$ materials is poor, In $(Ti_{1-x}Alx)N$ with Ti-Co additive, the stoichiometric TiN is transformed by the under-stoichiometric TiNx(x<1.0) during sintering, leading to the good properties such as hardnees and hot oxidation.

  • PDF