• Title/Summary/Keyword: direct injection

검색결과 1,013건 처리시간 0.027초

가솔린 인젝터의 연료 분무 미립화 특성에 미치는 분사 압력의 영향 (Effect of Injection Pressure on Atomization Characteristics of Fuel Spray in High-Pressure Gasoline Injector)

  • 이창식;최수천;김민규;권상일
    • 대한기계학회논문집B
    • /
    • 제24권4호
    • /
    • pp.555-560
    • /
    • 2000
  • This paper describes the macroscopic behavior and atomization characteristics of the high-pressure gasoline injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. The atomization characteristics of gasoline spray such as mean diameter and mean velocity of droplet were measured by the phase Doppler particle analyzer system. In order to obtain the influence of fuel injection pressure, the macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 3,5 and 7 MPa of injection pressure under different surrounding pressure in the spray chamber. The results of this work show that the fuel injection pressure of gasoline injector in GDl engine has influence upon the mean droplet diameter, mean velocity of spray droplet, the spray tip penetration, and spray width under the elevated ambient pressure.

직접 분사식 가솔린 엔진을 이용한 성층 연소 특성에 관한 실험적 연구 (An Experimental Study on the Stratified Combustion Characteristics in a Direction Injection Gasoline Engine)

  • 이창희;이기형;임경빈;김봉규
    • 한국자동차공학회논문집
    • /
    • 제14권2호
    • /
    • pp.121-126
    • /
    • 2006
  • A gasoline-fueled stratified charge compression ignition (SCCI) engine with both direct fuel injection and intake temperature and compression ratio was examined. The fuel was injected directly by using the high temperature resulting from heating intake port. With this injection strategy, the SCCI combustion region was expanded dramatically without any increase in NOx emissions which were seen in the case of compression stroke injection. Injection timing during the intake temperature was found to be an important parameter that affects the SCCI region width. The effect of mixture stratification and the effect of fuel reformation can be utilized to reduce the required intake temperature for suitable SCCI combustion under each set of engine speed and compression ratio conditions.

부탄과 프로판 혼합비율에 따른 액상 LPG 분사시 Icing 특성 (Icing Characteristics of Liquid Phase LPG Injection According to Butane and Propane Mixing Rates)

  • 김영진;조원준;이기형
    • 한국분무공학회지
    • /
    • 제16권3호
    • /
    • pp.146-151
    • /
    • 2011
  • LPG(Liquified Petroleum Gas) fuel for vehicles has lots of advantages such as low emission level, cheaper fuel cost and enough infrastructure. Therefore it arouses interest as an alternative engine to reduce emission of diesel engines. Especially MPI(Multi Point Injection) type LPLi(Liquid Phase LPG injection) system could have overcome the disadvantages of mixer types such as low engine performance, decreased charging efficiency and cold starting difficulty. However ice formation on the nozzle tip and intake port due to the freezing of moisture around the components is often observed in LPLi systems. This icing phenomenon is the direct cause of unstable engine combustion, resulting in engine emissions. Therefore in this research, a spray visualization test for LPG injection was carried out to obtain the basic information of an LPLi injector, then the effects of butane and propane mixing rates on ice formation at the intake port and nozzle tip was investigated. As a result, the icing characteristics of them showed contrary results according to the mixing rates.

Point Inject Technique을 이용한 치과 국소마취의 통증 조절 및 진료 효율의 극대화 (Pain control using the Point-Inject Technique in dental local anesthesia)

  • 이재윤;최성아
    • 대한치과의료관리학회지
    • /
    • 제9권1호
    • /
    • pp.32-37
    • /
    • 2021
  • Many approaches to local anesthesia have been studied in dentistry. In this study, we introduce a new local anesthetic method, "Point-Inject Technique (PIT)", and compare it with traditional injection techniques. The PIT method utilizes both the vasoconstrictive and antinociceptive properties of local anesthetics as well as the application of controlled pressure during injection, reducing the time to complete anesthesia. Fifty patients were selected as the experimental group who were anesthetized using PIT, and the other 50 patients were selected as the control group using the direct injection method with a carpool syringe. The PIT group received 0.25 cartridges of 2% lidocaine with 1:100,000 epinephrine. The control group received 1.5~2 cartridges of 2% lidocaine with 1:100,000 epinephrine. Both groups were asked to mark the intensity of the pain caused by anesthesia using the Numeric Pain Rating Scale. The average time to recover from anesthesia was 40 minutes in the experimental group and 90 minutes in the control group. Additionally, 96% of the experimental group reported feeling no pain, while 78% of the control group reported having some form of pain during injection. The PIT method reduced both the reported pain scores of patients as well as time to recover from local anesthesia than the widely-used syringe injection method.

신경과 먼 부위 근육 내 주사 후 발생한 좌골신경병증 (Sciatic Neuropathy after Intramuscular Injection at a Site Remote from the Nerve)

  • 윤수인;박지수;고윤담;송대헌;박지혜
    • Clinical Pain
    • /
    • 제20권1호
    • /
    • pp.43-48
    • /
    • 2021
  • Sciatic nerve can be injured by various mechanism such as compression, traction during surgery, and direct trauma. This case reports a sciatic neuropathy caused by compression due to hematoma occurring after intramuscular injection in the gluteus medius muscle far from the nerve. In order to avoid occurrence of sciatic neuropathy after buttock injection, the injection was made in the upper outer quadrant of the buttock, but sciatic neuropathy occurred. Sciatic neuropathy can be confused with lumbar radiculopathy, so differential diagnosis is important.

초고압 커먼레일 연료분사튜브 원재료 강성 최적화를 위한 인발 공정에서의 Die와 Plug 각도 변경에 따른 해석적 연구 (An Analytical Study by Variation of Die and Plug Angle in Drawing Process for the Strength Optimization of Ultra High Pressure Common Rail Fuel Injection Tube Raw Material)

  • 안서연;박정권;김용겸;원종필;김현수;강인산
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.338-344
    • /
    • 2016
  • The study is actively being performed to increase fuel injection pressure of common rail system among countermeasures to meet the emission regulation strengthen of the Diesel engine. The common rail fuel injection tube in such ultra high pressure common rail system has the weakest structural characteristics against vibration that is generated by fuel injection pressure and pulsation during engine operation and driving. Thus the extreme durability is required for common rail fuel injection tube, and the drawing process is being magnified as the most important technical fact for strength of seamless pipe that is the raw material of common rail tube. In this respect, we analyzed the characteristic of dimension and stress variation of the ultra high pressure common rail fuel injection tube by variation of Die and Plug angle in drawing process. Based on the analysis, we tried to obtain the raw material strength of common rail fuel injection tube for applying to the ultra high pressure common rail system. As a result, Plug angle is more important than entry angle of Die and we could obtain the target dimension and strength of the ultra high pressure common rail fuel injection tube through optimization of Plug angle.

이중분사기가 장착된 디젤 엔진에서 목질계 열분해유의 적용 가능성에 관한 연구 (Feasibility Study of Using Wood Pyrolysis Oil in a Dual-injection Diesel Engine)

  • 이석환;장영운;김호승;김태영;강건용;임종한
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.1-9
    • /
    • 2014
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of petroleum fuels. Fast pyrolysis of biomass is one of several paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO) has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of WPO in a diesel engine requires modifications due to low energy density, high water contents, high acidity, high viscosity, and low cetane number of the WPO. One possible method by which the shortcomings may be circumvented is to co-fire WPO with other petroleum fuels. WPO has poor miscibility with light petroleum fuel oils; the most suitable candidates fuels for direct fuel mixing are methanol or ethanol. Early mixing with methanol or ethanol has the added benefit of significantly improving the storage and handling properties of the WPO. For separate injection co-firing, a WPO-ethanol blended fuel can be fired through diesel pilot injection in a dual-injection dieel engine. In this study, the performance and emission characteristics of a dual-injection diesel engine fuelled with diesel (pilot injection) and WPO-ethanol blend (main injection) were experimentally investigated. Results showed that although stable engine operation was possible with separate injection co-firing, the fuel conversion efficiency was slightly decreased due to high water contents of WPO compare to diesel combustion.

직분식 CNG 엔진에서 연료 분사시기의 변화가 연소 및 출력 특성에 미치는 영향 (The Effect of Fuel Injection Timing on Combustion and Power Characteristics in a DI CNG Engine)

  • 강정호;윤수한;이중순;박종상;하종률
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.193-200
    • /
    • 2007
  • Natural gas is one of the most promising alternatives to gasoline and diesel fuels because of its lower harmful emissions, including $CO_2$, and high thermal efficiency. In particular, natural gas is seen as an alternative fuel for heavy-duty Diesel Engines because of the lower resulting emissions of PM, $CO_2$ and $NO_x$. Almost all CNG vehicles use the PFI-type Engine. However, PFI-type CNG Engines have a lower brake horse power, because of reduced volumetric efficiency and lower burning speed. This is a result of gaseous charge and the time losses increase as compared with the DI-type. This study was conducted to investigate the effect of injection conditions (early injection mode, late injection mode) on the combustion phenomena and performances in the or CNG Engine. A DI Diesel Engine with the same specifications used in a previous study was modified to a DI CNG Engine, and injection pressure was constantly kept at 60bar by a two-stage pressure-reducing type regulator. In this study, excess air ratios were varied from 1.0 to the lean limit, at the load conditions 50% throttle open rate and 1700rpm. The combustion characteristics of the or CNG Engine - such as in-cylinder pressure, indicated thermal efficiency, cycle-by-cycle variation, combustion duration and emissions - were investigated. Through this method, it was possible to verify that the combustion duration, the lean limit and the emissions were improved by control of injection timing and the stratified mixture conditions. And combustion duration is affected by not only excess air ratio, injection timing and position of piston but gas flow condition.

Tungsten oxide interlayer for hole injection in inverted organic light-emitting devices

  • 김윤학;박순미;권순남;김정원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.380-380
    • /
    • 2010
  • Currently, organic light-emitting diodes (OLEDs) have been proven of their readiness for commercialization in terms of lifetime and efficiency. In accordance with emerging new technologies, enhancement of light efficiency and extension of application fields are required. Particularly inverted structures, in which electron injection occurs at bottom and hole injection on top, show crucial advantages due to their easy integration with Si-based driving circuits for active matrix OLED as well as large open area for brighter illumination. In order to get better performance and process reliability, usually a proper buffer layer for carrier injection is needed. In inverted top emission OLED, the buffer layer should protect underlying organic materials against destructive particles during the electrode deposition, in addition to increasing their efficiency by reducing carrier injection barrier. For hole injection layers, there are several requirements for the buffer layer, such as high transparency, high work function, and reasonable electrical conductivity. As a buffer material, a few kinds of transition metal oxides for inverted OLED applications have been successfully utilized aiming at efficient hole injection properties. Among them, we chose 2 nm of $WO_3$ between NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] and Au (or Al) films. The interfacial energy-level alignment and chemical reaction as a function of film coverage have been measured by using in-situ ultraviolet and X-ray photoelectron spectroscopy. It turned out that the $WO_3$ interlayer substantially reduces the hole injection barrier irrespective of the kind of electrode metals. It also avoids direct chemical interaction between NPB and metal atoms. This observation clearly validates the use of $WO_3$ interlayer as hole injection for inverted OLED applications.

  • PDF

압축착화 엔진에서 가솔린과 디젤연료의 연소 특성에 관한 연구 (A Study on Combustion Characteristics of Gasoline and Diesel Fuels in a Compression Ignition Engine)

  • 김기현
    • 동력기계공학회지
    • /
    • 제21권1호
    • /
    • pp.63-69
    • /
    • 2017
  • The combustion characteristics of gasoline and diesel were tested in a compression ignition engine. Both fuels were used with same common rail injection system. Combustion experiment showed that low load condition of 0.45 MPa IMEP (indicated mean effective pressure) was tested in metal and optical engines. The gasoline combustion showed higher hydrocarbon and carbon monoxide emissions but lower soot emission compared with diesel combustion. NOx emissions were very high at late injection timing but significantly decreased at early injection timing due to the lean combustion resulted from vigorous mixing process. Direct combustion visualization showed that the diesel combustion was dominated by diffusion combustion exhibiting soot incandescence and the gasoline combustion was mostly consisted of premixed combustion showing blue chemiluminescence.