• 제목/요약/키워드: direct exploitation

검색결과 41건 처리시간 0.026초

고성능 데이터 캐시 메모리 구조 (High Performance Data Cache Memory Architecture)

  • 김홍식;김정길
    • 한국산학기술학회논문지
    • /
    • 제9권4호
    • /
    • pp.945-951
    • /
    • 2008
  • 공간적 지역성(spatial locality) 및 시간적 지역성(temporal locality)을 동시에 향상시킬 수 있는 새로운 고성능 데이터 캐시 구조를 제안한다. 제안된 캐시 메모리는 하드웨어 프리패치 유닛과 큰 블록 크기를 갖는 직접사상(DM: direct mapped) 캐시와 작은 블록 크기를 갖는 완전 사상(FA: fully associative) 캐시의 하위 캐시 유닛으로 구성된다. 공간적 지역성은 블록 데이터를 패치하여 직접 사상 캐시에 저장함으로써 보장되며, DM 캐시 히트가 발생한 경우에 그 이웃 데이터 블록을 프리패치 함으로써 최적화 된다. 시간적 지역성은 작은 블록 데이터가 DM 캐시로부터 제거 될때 그 블록의 과거 기록에 따라서 중요한 데이터는 완전사상 캐시에 저장함으로써 보장된다. Spec2000 벤치 마크 프로그램에 대한 실험 결과에 의하면 제안된 캐시 구조는 비슷한 크기의 직접사상 캐쉬, 4웨이 연관사상(4 way set associative cache) 및 SMI(selective-mode intelligent cache) 캐쉬 [8]등의 기존의 구조에 비해서 미스 비율(miss rate)을 평균적으로 $12.53\sim23.62%$ 그리고 AMAT(average memory access time)를 평균적으로 $14.67\sim18.60%$ 줄일 수 있음을 증명하였다.

대규모 TSP과제를 효과적으로 해결할 수 있는 SOFM알고리듬 (An Efficient Algorithm based on Self-Organizing Feature Maps for Large Scale Traveling Salesman Problems)

  • 김선종;최흥문
    • 전자공학회논문지B
    • /
    • 제30B권8호
    • /
    • pp.64-70
    • /
    • 1993
  • This paper presents an efficient SOFM(self-organizing feature map) algorithm for the solution of the large scale TSPs(traveling salesman problems). Because no additional winner neuron for each city is created in the next competition, the proposed algorithm requires just only the N output neurons and 2N connections, which are fixed during the whole process, for N-city TSP, and it does not requires any extra algorithm of creation of deletion of the neurons. And due to direct exploitation of the output potential in adaptively controlling the neighborhood, the proposed algorithm can obtain higher convergence rate to the suboptimal solutions. Simulation results show about 30% faster convergence and better solution than the conventional algorithm for solving the 30-city TSP and even for the large scale of 1000-city TSPs.

  • PDF

나노기술에 대한 연구개발 동향 조사 (The survey on the research trend for nanotechnology)

  • 박찬복;유경화
    • 한국기술혁신학회:학술대회논문집
    • /
    • 한국기술혁신학회 2001년도 춘계학술대회:발표자료
    • /
    • pp.271-284
    • /
    • 2001
  • Nanotechnology arises from the exploitation of physical, chemical,and biological properties of systems that are intermediate in size between isolated atoms/molecules and bulk materials, where phenomena length scales become comparable to the size of the structure. In addition nanotechnology implies direct control of materials and devices on molecular and atomic scale, including fabrication of functional nanostructures with desired properties, synthesis and processing of nanoparticles, self-assembly, use of quantum effects, etc. This article is a collection of Informations of trend of research and development in the field of nanotechnology in U.S., EU, Japan and Korea. And we would like to include some idea to decide the direction and the strategy for the investment for nanotechnology.

  • PDF

Effects of particle size and loading rate on the tensile failure of asphalt specimens based on a direct tensile test and particle flow code simulation

  • Q. Wang;D.C. Wang;J.W. Fu;Vahab Sarfarazi;Hadi Haeri;C.L. Guo;L.J. Sun;Mohammad Fatehi Marji
    • Structural Engineering and Mechanics
    • /
    • 제86권5호
    • /
    • pp.607-619
    • /
    • 2023
  • This study, it was tried to evaluate the asphalt behavior under tensile loading conditions through indirect Brazilian and direct tensile tests, experimentally and numerically. This paper is important from two points of view. The first one, a new test method was developed for the determination of the direct tensile strength of asphalt and its difference was obtained from the indirect test method. The second one, the effects of particle size and loading rate have been cleared on the tensile fracture mechanism. The experimental direct tensile strength of the asphalt specimens was measured in the laboratory using the compression-to-tensile load converting (CTLC) device. Some special types of asphalt specimens were prepared in the form of slabs with a central hole. The CTLC device is then equipped with this specimen and placed in the universal testing machine. Then, the direct tensile strength of asphalt specimens with different sizes of ingredients can be measured at different loading rates in the laboratory. The particle flow code (PFC) was used to numerically simulate the direct tensile strength test of asphalt samples. This numerical modeling technique is based on the versatile discrete element method (DEM). Three different particle diameters were chosen and were tested under three different loading rates. The results show that when the loading rate was 0.016 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis till coalescence to the model boundary. When the loading rate was 0.032 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis. The branching occurs in these cracks. This shows that the crack propagation is under quasi-static conditions. When the loading rate was 0.064 mm/sec, mixed tensile and shear cracks were initiated below the loading walls and branching occurred in these cracks. This shows that the crack propagation is under dynamic conditions. The loading rate increases and the tensile strength increases. Because all defects mobilized under a low loading rate and this led to decreasing the tensile strength. The experimental results for the direct tensile strengths of asphalt specimens of different ingredients were in good accordance with their corresponding results approximated by DEM software.

Numerical simulation of the effect of confining pressure and tunnel depth on the vertical settlement using particle flow code (with direct tensile strength calibration in PFC Modeling)

  • Haeri, Hadi;Sarfarazi, Vahab;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • 제25권4호
    • /
    • pp.433-446
    • /
    • 2020
  • In this paper the effect of confining pressure and tunnel depth on the ground vertical settlement has been investigated using particle flow code (PFC2D). For this perpuse firstly calibration of PFC2D was performed using both of tensile test and triaxial test. Then a model with dimention of 100 m × 100 m was built. A circular tunnel with diameter of 20 m was drillled in the middle of the model. Also, a rectangular tunnel with wide of 10 m and length of 20 m was drilled in the model. The center of tunnel was situated 15 m, 20 m, 25 m, 30 m, 35 m, 40 m, 45 m, 50 m, 55 m and 60 m below the ground surface. these models are under confining pressure of 0.001 GPa, 0.005 GPa, 0.01 GPa, 0.03 GPa, 0.05 GPa and 0.07 GPa. The results show that the volume of colapce zone is constant by increasing the distance between ground surface and tunnel position. Also, the volume of colapce zone was increased by decreasing of confining pressure. The maximum of settlement occurs at the top of the tunnel roof. The maximum of settlement occurs when center of tunnel was situated 15 m below the ground surface. The settlement decreases by increasing the distance between tunnel center line and measuring circles in the ground surface. The minimum of settlement occurs when center of circular tunnel was situated 60 m below the surface ground. Its to be note that the settlement increase by decreasing the confining pressure.

Investigation of shear behavior of soil-concrete interface

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi;Masoumi, Alireza
    • Smart Structures and Systems
    • /
    • 제23권1호
    • /
    • pp.81-90
    • /
    • 2019
  • The shear behavior of soil-concrete interface is mainly affected by the surface roughness of the two contact surfaces. The present research emphasizes on investigating the effect of roughness of soil-concrete interface on the interface shear behavior in two-layered laboratory testing samples. In these specially prepared samples, clay silt layer with density of $2027kg/m^3$ was selected to be in contact a concrete layer for simplifying the laboratory testing. The particle size testing and direct shear tests are performed to determine the appropriate particles sizes and their shear strength properties such as cohesion and friction angle. Then, the surface undulations in form of teeth are provided on the surfaces of both concrete and soil layers in different testing carried out on these mixed specimens. The soil-concrete samples are prepared in form of cubes of 10*10*30 cm. in dimension. The undulations (inter-surface roughness) are provided in form of one tooth or two teeth having angles $15^{\circ}$ and $30^{\circ}$, respectively. Several direct shear tests were carried out under four different normal loads of 80, 150, 300 and 500 KPa with a constant displacement rate of 0.02 mm/min. These testing results show that the shear failure mechanism is affected by the tooth number, the roughness angle and the applied normal stress on the sample. The teeth are sheared from the base under low normal load while the oblique cracks may lead to a failure under a higher normal load. As the number of teeth increase the shear strength of the sample also increases. When the tooth roughness angle increases a wider portion of the tooth base will be failed which means the shear strength of the sample is increased.

반응성 염료를 이용한 양모직물의 광그라프트 염색 (Photo-grafting Dyeing of Wool Fabrics with ${\alpha}$-bromoacrylamide reactive dye)

  • 동위엔위엔;장진호
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2011년도 제44차 학술발표회
    • /
    • pp.31-31
    • /
    • 2011
  • Lanasol dyes containing ${\alpha}$-bromoacrylamide or ${\alpha},{\beta}$-dibromopropionylamide group are used for wool dyeing. They are normally applied to wool under pH 4.5 to 6.5 at $100^{\circ}C$. Although wool fabric can be dyed to obtain deep colour, high light and wet fastness, the dyeing processes need long dyeing time at high temperature, with salt addition, which inevitably causes environmental problems. Grafting is a modification method for textile where monomers are covalently bonded onto the polymer chain. It can be initiated by ozone, ${\gamma}$ rays, electron beams, plasma, corona discharge and UV irradiation. Coloration by UV-induced photografting exhibits several advantages such as fast reaction rate, energy saving, simple equipment, easy exploitation and environmentally friendliness. Also it requires much lower energy compared to the conventional dyeing and less damage to the substrate. In this study, a direct sequential UV-induced photografting onto wool fabrics was discussed. To understand the graft polymerization mechanism further, several characterization methods were used. Moreover, the effects of several principal factors on the graft photopolymerization were investigated. Furthermore, the colorfastness results were compared with conventional dyeing methods.

  • PDF

Combine 수확시 탈락볍씨의 경련 휴경조건하 자연상태에서의 수량성 (Productivity of the Rice Plants at the Abandoned Crop Field Established from the Shattered Grains by Combine Harvesting)

  • 허상만;임준택
    • 한국작물학회지
    • /
    • 제36권1호
    • /
    • pp.79-84
    • /
    • 1991
  • 기계수확시 탈립된 종자들이 이듬해 발아 생장하여 휴경조건하에서 수량 및 수량구성 요소에 많은 변이를 보였기에 무경운 직파재배의 가능성을 타진하려 수도의 수량 및 수량구성요소를 조사하였고 또한 잡초종의 피도에 따른 수량변이를 상관계수를 통해 알아보았다. 무경운 무시비 조건에서도 단위면적당 최대 188kg/10a의 수량을 보여 입모확보가 보장된다면 무경운 직파재배는 가능할 것으로 판단되었다. 또한 성공적 무경운 직파를 위해서는 충분한 입모확보, 천이, 두과식물과의 적절한 혼파 초형개발에 관한 연구가 기대된다.

  • PDF

The Effect of IT Human Capability and Absorptive Capacity on Knowledge Transfer

  • Park, Joo-Yeon
    • Journal of Information Technology Applications and Management
    • /
    • 제15권3호
    • /
    • pp.209-225
    • /
    • 2008
  • The purpose of this study is to examine the relationship between IT human capability and knowledge transfer and the role of absorptive capacity between them. From the test of both measurement and structural model using Partial Least Squares (PLS), IT human capability is found to be significant to absorptive capacity and knowledge transfer. Absorptive capacity is also significantly related to knowledge transfer. The interesting result found in this study is that the path of absorptive capacity drawn from IT human capability to knowledge transfer is stronger than the direct relationship between IT human capability and knowledge transfer, indicating that absorptive capacity plays an important role in knowledge transfer. This result indicates that IT personnel with stronger technical skill, interpersonal skill and management capability are more likely to acquire and learn knowledge effectively from outside expertise. Moreover, this study shows that absorptive capacity, the individual’s ability to utilize external knowledge is derived from IT human capability and strongly effects on transferring knowledge from outsourcing vendors. This study suggests IT related managers that the development of IT human capability and absorptive capacity should be recognized for a successful exploitation of outside knowledge within a firm. It is also a necessary condition for a successful IT implementation and maintenance independently and economically from outside vendors.

  • PDF

Static performance analysis of deepwater compliant vertical access risers

  • Lou, Min;Li, Run;Wu, Wugang;Chen, Zhengshou
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.970-979
    • /
    • 2019
  • Compliant Vertical Access Risers (CVARs) are compliant systems that incorporate a differentiated geometric configuration that allows the exploitation of oil and gas in deepwater fields and enables a number of operational advantages in the offshore system. One of the main features of CVAR systems is that they allow direct intervention procedures to be applied to the well bore, enabling workover operations to be performed directly from the production platform. Based on the principles of virtual work and variation, a static geometric nonlinear equation of CVARs is derived and applied in this study. The results of this study show that the two ends of the riser as well as the transition region are subject to high stress, while the positions of the floating platform exert significant effects on the geometry of the riser configuration. Compliance and buoyancy factors should be set moderately to reduce the CVAR stress. In addition, the buoyancy modules should be placed in the lower region, in order to maximize the operation advantages of CVAR.