• 제목/요약/키워드: direct coupling

검색결과 247건 처리시간 0.024초

Oxidative Coupling of Methane by Metal Oxide Catalysts (금속 산화물 촉매를 이용한 메탄의 Oxidative Coupling 반응)

  • Kim, Hyung-Jin;Pyun, Moo-Sil;Park, Hong-Soo;Hahm, Hyun-Sik
    • Applied Chemistry for Engineering
    • /
    • 제4권4호
    • /
    • pp.807-813
    • /
    • 1993
  • Oxidative coupling of methane(OCM), one of the methods of direct methane conversion, was performed. Metal oxide catalysts used were Li/MgO and Pb/MgO. To investigate the reactivity of the catalysts with temperature, the reaction was carried out at 600, 700 and $800^{\circ}C$; and to investigate the effect of the feed ratio of the reactants($CH_4:O_2$) on reactivity, conversion, and selectivity the reaction was performed at $700^{\circ}C$ with the feed ratio of 2:1 and 1:1. The results indicate that 7wt% Li/MgO catalyst is a good catalyst for OCM reaction with 20% conversion and 65% selectivity at $700^{\circ}C$ with the feed ratio of 2:1. As feed ratio was 1:1, methane conversion was increased to 30% while $C_2$ selectivity decreased to 45% at $700^{\circ}C$ with 7wt% Li/MgO catalyst. The Pb/MgO catalyst showed less selectivity(25%) than Li/MgO did.

  • PDF

Wireless Energy and Data Transmission Using Inductive Coupling (유도결합방식에 의한 무선 에너지 및 데이터 전송)

  • Lee, Joon-Ha
    • Progress in Medical Physics
    • /
    • 제19권1호
    • /
    • pp.42-48
    • /
    • 2008
  • Bio-implantable devices such as heart pacers, gastric pacers and drug-delivery systems require power for carrying out their intended functions. These devices are usually powered through a battery implanted with the system or are wired to an external power source. This paper describes an inductive power transmission link, which was developed for an implantable stimulator for direct stimulation of denervated muscles. The carrier frequency is around 1MHz, the transmitter coil has a diameter of 46mm, and the implant coil is 46mm. Data transmission to the implant with amplitude shift keying (ASK) and back to the transmitter with passive telemetry can be added without major design changes. We chose the range of coil spacing (2 to 30mm) to care for lateral misalignment, as it occurs in practical use. If the transmitter coil has a well defined and reliable position in respect to the implant, a smaller working range might be sufficient. Under these conditions the link can be operated in fixed frequency mode, and reaches even higher efficiencies of up to 37%. The link transmits a current of 50 mA over a distance range of 2-15 mm with an efficiency of more than 20% in tracking frequency. The efficiency of the link was optimized with different approaches. A class E transmitter was used to minimize losses of the power stage. The geometry and material of the transmitter coil was optimized for maximum coupling. Phase lock techniques were used to achieve frequency tracking, keeping the transmitter optimally tuned at different coupling conditions caused by coil distance variations.

  • PDF

A study on the action mechanism of internal pressures in straight-cone steel cooling tower under two-way coupling between wind and rain

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Yang, Q.;Wang, H.;Tamura, Y.
    • Wind and Structures
    • /
    • 제27권1호
    • /
    • pp.11-27
    • /
    • 2018
  • The straight-cone steel cooling tower is a novel type of structure, which has a distinct aerodynamic distribution on the internal surface of the tower cylinder compared with conventional hyperbolic concrete cooling towers. Especially in the extreme weather conditions of strong wind and heavy rain, heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind, but existing studies mainly focus on the impact effect brought by wind-driven rain to structure surface. In addition, for the indirect air cooled cooling tower, different additional ventilation rate of shutters produces a considerable interference to air movement inside the tower and also to the action mechanism of loads. To solve the problem, a straight-cone steel cooling towerstanding 189 m high and currently being constructed is taken as the research object in this study. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed with continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind sped and rainfall intensity on flow field mechanism, the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower cylinder is analyzed. On this basis, the internal pressures of the cooling tower under the most unfavorable working condition are compared between four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the 3D effect of equivalent internal pressure coefficient is the most significant when considering two-way coupling between wind and rain. Additional load imposed by raindrops on the internal surface of the tower accounts for an extremely small proportion of total wind load, the maximum being only 0.245%. This occurs under the combination of 20 m/s wind velocity and 200 mm/h rainfall intensity. Ventilation rate of shutters not only changes the air movement inside the tower, but also affects the accumulated amount and distribution of raindrops on the internal surface.

Development of 0D Multizone Combustion Model and Its Coupling with 1D Cycle-Simulation Model for Medium-Sized Direct-Injection Diesel Engine (중형 직분식 디젤 엔진의 0-D Multi-zone 연소 모델 및 1-D Cycle Simulation 연계 기법 개발)

  • Choi, Seung-Mok;Min, Kyoung-Doug;Kim, Ki-Doo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제34권6호
    • /
    • pp.615-622
    • /
    • 2010
  • In this study, a 0D multizone spray-combustion model is developed for the estimation of the performance and NOx emission of medium-sized direct-injection marine diesel engine. The developed combustion model is coupled with the commercial 1D cycle-simulation model, Boost, to analyze the entire engine system, including the intake and exhaust. The combustion model code was generated using Fortran90, and the model was coupled with Boost by connecting the generated code to a user-defined high-pressure cycle (UDHPC) interface. Simulation was performed for two injectors (8 holes and 10 holes) and two engine loads (50% and 100%), and the results of simulation were in good agreement with engine performance test.

Dynamic Model of a Passive Air-Breathing Direct Methanol Fuel Cell (수동급기 직접 메탄올 연료전지의 동적 모델)

  • Ha, Seung-Bum;Chang, Ikw-Hang;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.33-36
    • /
    • 2008
  • The transient behavior of a passive air breathing direct methanol fuel cell (DMFC) operated on vapor-feeding mode is studied in this paper. It generally takes 30 minutes after starting for the cell response to come to its steady-state and the response is sometimes unstable. A mathematical dynamic one-dimensional model for simulating transient response of the DMFC is presented. In this model a DMFC is decomposed into its subsystems using lumped model and divided into five layers, namely the anodic diffusion layer, the anodic catalyst layer, the proton exchange membrane (PEM), the cathodic catalyst layer and the cathodic diffusion layer. All layers are considered to have finite thickness, and within every one of them a set of differential-algebraic governing equations are given to represent multi-components mass balance, such as methanol, water, oxygen and carbon dioxide, charge balance, the electrochemical reaction and mass transport phenomena. A one-dimensional, isothermal and mass transport model is developed that captures the coupling between water generation and transport, oxygen consumption and natural convection. The single cell is supplied by pure methanol vapor from a methanol reservoir at the anode, and the oxygen is supplied via natural air-breathing at the cathode. The water is not supplied from external source because the cell uses the water created at the cathode using water back diffusion through nafion membrane. As a result of simulation strong effects of water transport were found out. The model analysis provides several conclusions. The performance drop after peak point is caused by insufficiency of water at the anode. The excess water at the cathode makes performance recovery impossible. The undesired crossover of the reactant methanol through the PEM causes overpotential at the cathode and limits the feeding methanol concentration.

  • PDF

Development of Implantable Blood Pressure Sensor Using Quartz Wafer Direct Bonding and Ultrafast Laser Cutting (Quatrz 웨이퍼의 직접접합과 극초단 레이저 가공을 이용한 체내 이식형 혈압센서 개발)

  • Kim, Sung-Il;Kim, Eung-Bo;So, Sang-kyun;Choi, Jiyeon;Joung, Yeun-Ho
    • Journal of Biomedical Engineering Research
    • /
    • 제37권5호
    • /
    • pp.168-177
    • /
    • 2016
  • In this paper we present an implantable pressure sensor to measure real-time blood pressure by monitoring mechanical movement of artery. Sensor is composed of inductors (L) and capacitors (C) which are formed by microfabrication and direct bonding on two biocompatible substrates (quartz). When electrical potential is applied to the sensor, the inductors and capacitors generates a LC resonance circuit and produce characteristic resonant frequencies. Real-time variation of the resonant frequency is monitored by an external measurement system using inductive coupling. Structural and electrical simulation was performed by Computer Aided Engineering (CAE) programs, ANSYS and HFSS, to optimize geometry of sensor. Ultrafast laser (femto-second) cutting and MEMS process were executed as sensor fabrication methods with consideration of brittleness of the substrate and small radial artery size. After whole fabrication processes, we got sensors of $3mm{\times}15mm{\times}0.5mm$. Resonant frequency of the sensor was around 90 MHz at atmosphere (760 mmHg), and the sensor has good linearity without any hysteresis. Longterm (5 years) stability of the sensor was verified by thermal acceleration testing with Arrhenius model. Moreover, in-vitro cytotoxicity test was done to show biocompatiblity of the sensor and validation of real-time blood pressure measurement was verified with animal test by implant of the sensor. By integration with development of external interrogation system, the proposed sensor system will be a promising method to measure real-time blood pressure.

Modeling and Direct Power Control Method of Vienna Rectifiers Using the Sliding Mode Control Approach

  • Ma, Hui;Xie, Yunxiang;Sun, Biaoguang;Mo, Lingjun
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.190-201
    • /
    • 2015
  • This paper uses the switching function approach to present a simple state model of the Vienna-type rectifier. The approach introduces the relationship between the DC-link neutral point voltage and the AC side phase currents. A novel direct power control (DPC) strategy, which is based on the sliding mode control (SMC) for Vienna I rectifiers, is developed using the proposed power model in the stationary ${\alpha}-{\beta}$ reference frames. The SMC-based DPC methodology directly regulates instantaneous active and reactive powers without transforming to a synchronous rotating coordinate reference frame or a tracking phase angle of grid voltage. Moreover, the required rectifier control voltages are directly calculated by utilizing the non-linear SMC scheme. Theoretically, active and reactive power flows are controlled without ripple or cross coupling. Furthermore, the fixed-switching frequency is obtained by employing the simplified space vector modulation (SVM). SVM solves the complicated designing problem of the AC harmonic filter. The simplified SVM is based on the simplification of the space vector diagram of a three-level converter into that of a two-level converter. The dwelling time calculation and switching sequence selection are easily implemented like those in the conventional two-level rectifier. Replacing the current control loops with power control loops simplifies the system design and enhances the transient performance. The simulation models in MATLAB/Simulink and the digital signal processor-controlled 1.5 kW Vienna-type rectifier are used to verify the fast responses and robustness of the proposed control scheme.

Analysis of dye components using MECC and ion-pairing chromatography (MECC법과 Ion-Pairing 크로마토그래피법을 이용한 염료성분의 분석)

  • Jeong, Hyuk
    • Analytical Science and Technology
    • /
    • 제19권1호
    • /
    • pp.31-38
    • /
    • 2006
  • Micellar electrokinetic capillary chromatography(MECC) and HPLC with ion-pairing mechanism were applied for the separation of the well known environmental wastes from dye industry. These compounds include H-acid, J-acid, ${\gamma}$-acid, orthanilic acid, sulfanilic acid and 2-naphthylamine-1,5-disulfonic acid, and are known to be the diazo components of the azo dye. MECC method was also applied to separate few acid dyes including Acid Orange 7, Acid Orange 5 and Acid Blue 92 and direct dye such as Direct Red 80. Informations about the diazo components of any azo dye could be obtained by comparison of electropherogram of the reduction solution of a given dye with those obtained from standard materials such as H-acid, J-acid, ${\gamma}$-acid, orthanilic acid, sulfanilic acid and 2-naphthylamine-1,5-disulfonic acid. It has been concluded that MECC and HPLC with ion-pairing mechanism could be successfully applied for the analysis of unknown dyes and their diazo components.

A Study on Power Stability Improvement in the Inductive Coupled RFID Transponder System

  • Kim, Gi-Rae;Choi, Young-Kyu
    • Journal of information and communication convergence engineering
    • /
    • 제5권2호
    • /
    • pp.150-154
    • /
    • 2007
  • Transponders of RFID system are classified as active or passive depending on the type of power supply they use. In passive transponders the data carrier has to obtain its power from the induced voltage. The induced voltage is converted into direct current using a low loss bridge rectifier and then smoothed. In practice, the induced voltage in the transponder coil is variable according to the coupling coefficient k and the load resistance ($R_L$). Therefore, the rectified voltage is unstable and the transponder of RFID is unstable sometimes. In this paper, a voltage-dependent shunt resistor ($R_s$) circuits are designed and inserted in parallel with the load resistance of RFID transponder in order to improve the stability of power.

Active control of delaminated composite shells with piezoelectric sensor/actuator patches

  • Nanda, Namita;Nath, Y.
    • Structural Engineering and Mechanics
    • /
    • 제42권2호
    • /
    • pp.211-228
    • /
    • 2012
  • Present study deals with the development of finite element based solution methodology to investigate active control of dynamic response of delaminated composite shells with piezoelectric sensors and actuators. The formulation is based on first order shear deformation theory and an eight-noded isoparametric element is used. A coupled piezoelectric-mechanical formulation is used in the development of the constitutive equations. For modeling the delamination, multipoint constraint algorithm is incorporated in the finite element code. A simple negative feedback control algorithm coupling the direct and converse piezoelectric effects is used to actively control the dynamic response of delaminated composite shells in a closed loop employing Newmark's time integration scheme. The validity of the numerical model is demonstrated by comparing the present results with those available in the literature. A number of parametric studies such as the locations of sensor/actuator patches, delamination size and its location, radius of curvature to width ratio, shell types and loading conditions are carried out to understand their effect on the transient response of piezoceramic delaminated composite shells.