• Title/Summary/Keyword: direct boundary element

Search Result 115, Processing Time 0.026 seconds

Free vibration of actual aircraft and spacecraft hexagonal honeycomb sandwich panels: A practical detailed FE approach

  • Benjeddou, Ayech;Guerich, Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.169-187
    • /
    • 2019
  • This work presents a practical detailed finite element (FE) approach for the three-dimensional (3D) free-vibration analysis of actual aircraft and spacecraft-type lightweight and thin honeycomb sandwich panels. It consists of calling successively in $MATLAB^{(R)}$, via a developed user-friendly GUI, a detailed 3D meshing tool, a macrocommands language translator and a commercial FE solver($ABAQUS^{(R)}$ or $ANSYS^{(R)}$). In contrary to the common practice of meshing finely the faces and core cells, the proposed meshing tool represents each wall of the actual hexagonal core cells as a single two-dimensional (2D) 4 nodes quadrangularshell element or two 3 nodes triangular ones, while the faces meshes are obtained simply using the nodes at the core-faces interfaces. Moreover, as the same 2D FE interpolation type is used for meshing the core and faces, this leads to an automatic handling of their required FE compatibility relations. This proposed approach is applied to a sample made of very thin glass fiber reinforced polymer woven composite faces and a thin aluminum alloy hexagonal honeycomb core. The unknown or incomplete geometric and materials properties are first collected through direct measurements, reverse engineering techniques and experimental-FE modal analysis-based inverse identification. Then, the free-vibrations of the actual honeycomb sandwich panel are analyzed experimentally under different boundary conditions and numerically using different mesh basic cell shapes. It is found that this approach is accurate for the first few modes used for pre-design purpose.

The dynamic explicit analysis of auto-body panel stamping process and investigating parameter affects of dynamic analysis (차체판넬 스템핑공정의 동적 외연적해석과 동적해석에 미치는 영향인자 분석)

  • Jung, Dong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.380-390
    • /
    • 1998
  • In the present work a finite element formulation using dynamic explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and linearizing dynamic formulation. A contact scheme is developed by combining the skew boundary condition and direct trial-and-error method. In this work, for economic analysis the faster punch velocity and the mass scaling method are introduced. To investigate the effects of punch velocity and mass scaling, the various values of punch velocity and the various mass scalings are used for numerical analysis. Computations are carried out for analysis of complicated auto-body panel stamping processes such as forming of an oil pan and a fuel tank.

OPTIMAL SHAPE DESIGN OF ELECTROSTATIC DEVICES USING DESIGN SENSITIVITY ANALYSIS (설계민감도 해석을 이용한 정전소자의 형상최적화)

  • Koh, Chang-Seop;Jung, Hyun-Kyo;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.93-96
    • /
    • 1991
  • This paper describes a new algorithm based on design sensitivity analysis for optimal shape design of electrostatic devices. The design sensitivity, the variation of the object function with respect to the design variables, is derived by using implicit differentiation and direct boundary element methods. The proposed algorithm is applied to the optimal shape design of a concentric cable and the rod electrode enclosed by earthed case, It is shown, from the numerical results, that the algorithm is very usefull for the optimal shape design of the electrostatic devices.

  • PDF

A Study on the Vibration Reduction Effect of a Soil Grouting (그라우팅공법에 의한 지반진동감소 연구)

  • Huh, Young
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.173-180
    • /
    • 1995
  • Application of soil grouting method was adopted to reduce the vibration amplitude which propagates from the source. The direct formulation of the Boundary Element Method was applied to make the numerical model of soil. It was found form this study that the most effective location of the grouting layer is directly under the source of the vibration and the width of the grouting layer does not need to be longer than the required width which can be determined by numerical analysis.

  • PDF

Numerical Simulation of Infiltration and Solidification for Squeeze Casting of MMCs (가압주조법을 이용한 금속복합재료 제조공정의 침투와 열전달 해석)

  • Jung C.K.;Han K.S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.250-253
    • /
    • 2004
  • A finite element model is developed for the process of squeeze casting of metal matrix composites. The fluid flow and the heat transfer are fundamental phenomena in squeeze casting. The equations for the clear fluid flow and the flow in porous media are used to simulate the transient metal flow. To describe heat transfer in the solidification of molten aluminum, the energy equation is written in terms of temperature and enthalpy. A direct iteration technique is used to solve the resulting nonlinear algebraic equations. The cooling curves and temperature distribution during infiltration and solidification were calculated for a simplified model with pure aluminum. The developed program can be used for squeeze casting process of complex geometry, boundary conditions and processing parameter optimization.

  • PDF

Suppression of Sound Transmission through Composite Plate into Cavity with Anisotropic Piezoelectric Actuators (이방성 압전 작동기를 이용한 복합재료 평판을 통한 공동내의 소음 억제)

  • 윤기원;김승조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.695-700
    • /
    • 1997
  • A direct boundary element method(DBEM) is developed for thin bodies whose surfaces are rigid or compliant. The Helmholtz integral equation and its normal derivative integral equation are adopted simultaneously to calculate the pressure on both sides of the thin body, instead of the jump values across it, to account for the different surface conditions of each side. Unlike the usual assumption, the normal velocity is assumed to be discontinuous across the thin body. In this approach, only the neutral surface of the thin body has to be discretized. The method is validated by comparison with analytic and/or numerical results for acoustic scattering and radiation from several surface conditions of the thin body; the surfaces are rigid when stationary or vibrating, and part of the interior surface is lined with a sound-absorbing material.

  • PDF

STUDY ON DYNAMIC BEHAVIOUR IN 3PB DUCTILE STEEL SPECIMEN APPLIED BY THE IMPACT LOAD

  • HAN M. S.;CHO J. U.;BERGMARK A.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.229-234
    • /
    • 2005
  • The dynamic crack growth in ductile steel is investigated by means of the impact loaded 3 point bending (3PB) specimens. Results from experiments and numerical simulations are compared to each other. A modified 3PB specimen designed with the reduced width at its ends has been developed in order to avoid the initial compressive loading of the crack tip and also to avoid the uncertain boundary conditions at the impact heads. Numerical simulations of the experiments are made by using a finite element method (FEM) code, ABAQUS. The high speed photography is used to obtain the crack growth and the data of the crack tip opening displacement (CTOD). The direct measurements of the relative rotations of two specimen halves are made by using the Moire interference pattern.

Fluid-Structure Interaction Analysis for Structure in Viscous Flow (점성 유동장에서 운동하는 구조체의 유탄성 해석)

  • Nho, In-Sik;Shin, Sang-Mook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.168-174
    • /
    • 2008
  • To calculate the fluid-structure interaction(FSI) problem rationally, it should be the basic technology to analyse each domain of fluid and structure accurately. In this paper, a new FSI analysis algorithm was introduced using the 3D solid finite element for structural analysis and CFD code based on the HCIB method for viscous flow analysis. The fluid and structural domain were analysed successively and alternatively in time domain. The structural domain was analysed by the Newmark-b direct time integration scheme using the pressure field calculated by the CFD code. The results for example calculation were compared with other research and it was shown that those coincided each other. So we can conclude that the developed algorithm can be applied to the general FSI problems.

Wave Load Analysis of Flooded Ship Considering Size of Damage Opening (침수 선박의 손상부 크기에 따른 파랑하중 고찰)

  • Kim Byoung-Wan;Hong Do-Chun;Hong Sa-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.24-36
    • /
    • 2006
  • This paper investigates wave loads of ships that suffer sinkage due to flood in a compartment caused by damage on the side of the hull. By analyzing ships with various sizesof damage opening, the influence of opening size on ship response is investigated. The motion of the damaged ship is analyzed by using the boundary element method, based on three-dimensional potential theory, considering hydrodynamic pressure in the flooded compartments. The shear forces, bending moments and torsional moments are calculated by the direct integration of the three dimensional hydrodynamic pressure on the outer and inner hulls. A RORO passenger ship with length of 174.8 m is considered in the numerical example, and results for wave loads are discussed.

초기 모델의 경계조건에 따른 체결강성 보정특성 연구

  • 신영석;양해석;황철규;이열화
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.251-260
    • /
    • 1999
  • The stiffness of joint parts in the finite element beam model are corrected by the direct comparison between the modal test and analysis model. The corrected stiffness are reviewed according to the boundary conditions of modal testing. For the improved modal test/analysis correction, more modes measured than acceleration sensors are used to make a minimal order system model. In addition, the initial F.E. model is reduced to the degrees of freedom of a minimal order system model, keeping the dynamics of the initial model. Finally, for the parametric correction of the reduced model, the submatrices are used to model the initially assumed stiffness.

  • PDF