• Title/Summary/Keyword: direct air-cooling system

Search Result 53, Processing Time 0.029 seconds

Performance Characteristics on the Mixed Flow Type Absorption Chiller-Heater (혼합흐름 사이클용 흡수식 냉온수기의 성능특성)

  • Yoon, J.I.;Shin, G.B.;Park, S.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.351-360
    • /
    • 1996
  • This study focuses on the development and evaluation of the high efficiency absorption chiller-heater, which can be applied to a direct gas fired, double effect system with 40RT (508,000kJ) cooling capacity. The performance of the absorption chiller-heater is investigated through cycle simulation and experiment to obtain the system characteristics with the inlet tenperature of cooling, chilled water, and gas input flow rate. The efficiency of the different cycles has been studied and the simulation and experiment results show that higher coefficient of performance could be obtained for mixed flow cycle. The five percent difference was obtained from the comparison between experimental and cycle simulation results. As a result of this study, the optimum designs were determined based on the operating conditions and the coefficient of performance.

  • PDF

HVAC & Refrigeration System for Work Barge Vessel (WORK BARGE 선의 냉동.공조 SYSTEM)

  • Nam, Im-Woo;Jung, Jae-Chun;Kim, Bong-Je
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.583-590
    • /
    • 2008
  • 최근 작업자 숙소 및 이송용 외에 작업용으로 사용 가능한 Barge선의 일종인 Accommodation Work Barge 선의 건조량이 증가 추세인 바 현재 중국에서 건조 중인 해당 선박의 HVAC & Refrigeration system에 대하여 정리하였다. 본 시스템은 R404A Direct expansion 냉각방식 (직접팽창방식)이 적용되었으며 HVAC system 중 Air conditioning 부분에 대해서는 선박의 각 Deck 기준으로 Zoning 하여 개별적인 Air handling unit와 Condensing unit를 구성하였으며 (각 unit의 용량은 필요용량의 100%), 냉동 창고의 Refrigeration system은 해당 격실 (육고, 어고, 야채고)에 각각 Unit cooler를 설치하고, Condensing unit를 기계실에 설치하였다. 장비는 전체 용량 100%에 대하여 항시 운전하는 100% 용량의 장비와 비상시에 운전하는 100% 용량의 예비 장비로 구성된다. 냉동 창고에 인접한 Dry provision store는 냉동 창고와는 별개로 중앙 공조기로부터의 냉각 공기를 이용하여 Spot cooling하였다. 본 System의 구성에 대한 장점 및 단점은 아래와 같다. 1. Air conditioning system이 각 Zone에 대하여 구성되므로 각 Zone에 대하여 제어가 가능하다. 2. Air con. 실에 Air handling unit와 Condensing unit가 설치되므로 냉매 배관의 길이가 짧다. 3. Air con. 실에 Air handling unit와 Condensing unit가 설치되므로 실내의 Maintenance space 상에 여유가 없다.

  • PDF

Design & Performance of the Solar Energy Research & Test Center (태양에너지 연구 시험센타 설계 및 효율에 관한 연구)

  • Auh, Paul Chung-Moo;Lee, Jong-Ho;Choi, Byung-Owan;Cho, Yil-Sik
    • Solar Energy
    • /
    • v.2 no.2
    • /
    • pp.29-36
    • /
    • 1982
  • The Solar Energy R&D Department of KIER under the auspice of the Korean government is pushing hard on the development of the passive solar technology with high priority for the expeditious widespread use of solar energy in Korea, since the past few years of experiences told us that the active solar technology is not yet ready for massive commercialization in Korea. KIER has completed the construction of the Solar Energy Research & Test Center in Seoul, which houses the major facilities for its all solar test programs. The Center was designed as a passive solar building with great emphasis on the energy conserving ideas. The Center is not only the largest passive building in Korea, but also the exhibit center for the effective demonstration of the passive heating and cooling technology to the Korean public. The Center was designed to satisfy the requirements based on the technical and economical criteria set by the KIER. Careful considerations, therefore, were given in depth in the following areas to meet the requirements. 1) Passive Heating Concepts The Center employed the combination of direct and indirect gain system. The shape of the Center is Balcomb House style, and it included a large built-in sunspace in front. A partition, consists of transparent and translucent glazings, separates the sunspace and the living space. Since most activities in the Center occur during the day time, direct utilization of the solar energy by the living spaces was emphasized with the limited energy storage capacity. 2) Passive Cooling Concepts(for Summer) Natural ventilation concept was utilized throughout the building. In the direct gain portion of the system, the front glazing can be openable during the cooling season. Natural convection scheme was also applied to the front sunspace for the Summer cooling. Reflective surfaces and curtains were utilized wherever needed. 3) Auxiliary Heat ing and Cooling System As an auxiliary cooling system, mechanical means(forced convection system) were adopted. Therefore forced air heating system was also used to match the duct work requirements of the auxiliary cool ing system. 4) Effect ive Insulation & Others These included the double glazed windows, the double entry doors, the night glazing insulation, the front glazing-frame insulation as well as the building skin insulation. All locally available construction materials were used, and natural lightings were provided as much as possible. The expected annual energy savings (compared to the non-insulated conventional building)of the Center was estimated to be about 80%, which accounts for both the energy conservation and the solar energy source. The Center is being instumented for the actual performance tests. The experimental results of the simplified tests are discussed in this paper.

  • PDF

Cooling CFD Analysis of a Car Batter Pack with Circular Cells (원통형 셀을 이용한 자동차용 배터리팩 냉각해석)

  • Shin, Hyun Jang;Lee, Joo Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.693-698
    • /
    • 2017
  • The 18650 battery cell is known to be reliable and cost effective, but it has a design limitation and low electric capacity compared to pouch-type cells. Because its economy is superior, an 18650-cell-type battery pack is chosen. A reliable temperature is very important in automobile battery packs. Therefore, in this study, the temperature stability of the battery pack is predicted using CFD simulation. Following 3C discharge tests, the results for the heat generation of the battery cell are compared to the simulation results. Based on these results, a natural convection condition, forced convection condition, direct cell-cooling condition, cooling condition on the upper and lower surfaces of the battery pack, and cooling condition using air channels are all simulated. The results indicate that the efficiency and the performance of the air-channel-type cooling system is good.

Analysis on the Performance Evaluation Trends of Heat Pumps and the Test Standards of a Geothermal Heat Pump in Korea (히트펌프 성능 평가 동향과 국내 지열원 히트펌프 성능 평가 규격 및 제도 분석)

  • Kang, Shin-Hyung;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.4
    • /
    • pp.31-38
    • /
    • 2017
  • The heating and cooling air conditioning field has been increasing the problems of energy consumption and global warming in the world. A geothermal heat pump has been known as one of the highest efficient heating and cooling system. In this study, the analysis about the test standards of the geothermal heat pump of the Republic of Korea was executed. From the research, the following results were given. It is needed to address the domestic test standard for direct heat exchange geothermal heat pump. Water to air multi geothermal heat pump test standard was only developed in Korea. The test standard to calculate a seasonal energy efficiency ratio for cooling period and heat seasonal performance factor for heating period should be newly developed to estimate actual annual energy consumption and $CO_2$ emission.

Prediction of liquid amount in hydrogen liquefaction systems using GM refrigerator (GM냉동기를 이용한 수소액화 시스템의 액화량 예측)

  • 박대종;장호명;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.349-358
    • /
    • 1999
  • Thermodynamic cycle analysis has been performed to maximize the liquid amount for various hydrogen liquefaction systems using GM(Gifford-McMahon) refrigerator. Since the present authors' previous experiments showed that the liquefaction rate was approximately 5.1mg/s in a direct contact with a commercial GM refrigerator, the purpose of this study is to predict how much the liquefaction rate can be increased in different configurations and with improved heat exchanger performance. The optimal operating conditions have been analytically sought with real properties of normal hydrogen for the single-stage GM precooled L-H(Linde-Hampson) system, the two-stage GM direct contact system, the two-stage GM precooled L-H system and the two-stage helium GM-JT (Joule-Thomson) system. The maximum liquefaction rate has been predicted to be only about 7 times greater than the previous experiment, when the two-stage precooling is employed and the effectiveness of heat exchangers approaches to 99.0%. It is concluded that the liquefaction rate is limited mainly by the cooling capacity of the current GM refrigerators and a larger scale of hydrogen liquefaction is possible with a greater capacity of cryocooler at 60-70 K range.

  • PDF

A Study on the Effect of Automotive Engine Performance by Using Carbon Nano Colloid Cooling Water (탄소나노콜로이드 냉각수를 사용하여 자동차 엔진성능의 향상에 관한 연구)

  • Yi, Chung-Seob;Lee, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.134-142
    • /
    • 2011
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Exhaust pipes with circular fin were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NOx), carbon dioxide ($CO_2$) and carbon monoxide (CO). In addition, $O_2$ concentration in the exhaust was measured. The designs adopted in this study were about exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe technique. The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10 nm), surface forces are increasingly important. Nano particles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. The current tools for directly measuring interaction forces such as a surface force apparatus or atomic force microscopy (AFM) are limited to particles much larger than nano size. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^4$ by free convection and Re=$3.36{\times}10^4$ by forced air furnace.

Development and Evaluation of an Apparatus to Measure the Solar Heat Gain Coefficient of a Fenestration System According to KS L 9107 (KS L 9107에 의한 태양열 취득률(SHGC) 측정장치 개발 및 평가)

  • Kim, Tae-Jung;Choi, Hyun-Jung;Kang, Jae-Sick;Park, Jun-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.11
    • /
    • pp.512-521
    • /
    • 2014
  • Recently, multiple glazing units, frames, complex fenestration systems, and windows with shading devices have been developed to save cooling energy in buildings. However, very little work has been conducted on developing a direct experimental test method of the solar heat gain coefficient(SHGC) for new fenestration techniques. This study aims to develop and evaluate a test apparatus to measure the SHGC, according to the KS L 9107 test method. The performance of the solar simulator was class A, B, and A, for spectral match, non-uniformity, and instability irradiance, respectively. The differences between the measured and calculated SHGC values were found to range between 0.001 and 0.011, and for all test specimens they agreed within 4%. These results establish the validity of the test apparatus. This system is thus expected to be useful in assessing the energy performance for various types of fenestration.

Comparative Analysis of Multi-functional Public Values of Paddy Fields in Korea and Japan (한일간(韓日間) 논의 공익적(公益的) 기능별(機能別) 가치평가(價値評價) 비교분석(比較分析))

  • Lim, Jae Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.26 no.2
    • /
    • pp.70-76
    • /
    • 1999
  • Rice farming is not only the most important income resources of Korean farmers but also the roots of Korean traditional culture. Paddy fields have acted as an food supply base but also have contributed to the public multi-functions such as flood control, water conservation, controlling soil erosion, providing recreational and resting spaces, water purification, air cleaning, oxygen supply and air cooling and so on. The public multi-functions of paddy except rice production have not been evaluated before UR negotiation and starting WTO system. Under the drastic changes of rice economic settings as price decrease of rice and downward decrease of farm income, Korean and Japanese farmers might have lost their intention to grow rice in paddy fields without the direct payment system to compensate rice income decrease. To adapt the direct payment system, the total public value of multi-function of paddy should be identified in terms of money. According to the research results, the total value of multi-functional value of paddy in Korea were estimated 21,596thousand won which is higher than rice production value by 2.1 times. On the other hand the total value of Japanese paddy were amounted to 21,390 Yen which is more than that of Korea by 10times outstandingly. Likewise Japanese have evaluated the paddy field very important enterprise from the view point of food security and multi -functions of paddy to their socio-economic life and environmental sustainability in Japan.

  • PDF