• Title/Summary/Keyword: diols

Search Result 80, Processing Time 0.018 seconds

Polyesters Biosynthesis of Alcaligenes eutrophus H16(ATCC 17699) from Various Mono- and Dicarboxylic Acids and Diols

  • Song, Jae-Jun;Shin, Yong-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.123-128
    • /
    • 1993
  • The polyesters (polyhydroxyalkanoates; PHAs) production capability in a two-step cultivation of Alcaligenes eutrophus H16(ATCC 17699) was investigated by using various organic carbon sources. The carbon sources used included linear $C_2~C_10$ monocarboxylic acids, $C_3~C_10$ dicarboxylic acids, crotonic acid, and several linear vicinal and $\omega$-diols. The polyesters synthesized were characterized by 500 MHz $^1 H-NMR$ spectroscopy, intrinsic viscosity$[\eta]$ measurement in chloroform and differential scanning calorimetry (DSC). The PHAs synthesis data showed that the use of C-odd ($C_3, C_5, and C_7$) monocarboxylic acids resulted in poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(P(3HB-co-3HV) (3HV content ranging 40 to 70 mol%) while the use of $C_9$ substrate gave the copolyester containing only 4 mol% of 3HV. All culture products obtained on $C_3$~C$_{10}$ dicarboxylic acids gave exclusively P(3HB). 500 MHz $^1 H-NMR$ analysis showed that all polyesters synthesized generally contained 1~2 mol% 3HV even for the unrelated substrates such as the carboxylic acids with even number of carbon. When $\alpha, \omega$-diols with even number of carbon were used as substrates, 4-hydroxybutyrate(4HB) was inserted into the polyester chain composed of P(3HB-co-4HB). Vicinal diols were generally not utilized by the bacterium for polyester production.n.

  • PDF

Production of Chiral Epoxides: Epoxide Hydrolase-catalyzed Enantioselective Hydrolysis

  • Choi, Won-Jae;Choi, Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.167-179
    • /
    • 2005
  • Chiral epoxides are highly valuable intermediates, used for the synthesis of pharmaceutical drugs and agrochemicals. They have broad scope of market demand because of their applications. A major challenge in modern organic chemistry is to generate such compounds in high yields, with high stereo- and regio-selectivities. Epoxide hydrolases (EH) are promising biocatalysts for the preparation of chiral epoxides and vicinal diols. They exhibit high enantioselectivity for their substrates, and can be effectively used in the resolution of racemic epoxides through enantioselective hydrolysis. The selective hydrolysis of a racemic epoxide can produce both the corresponding diols and the unreacted epoxides with high enantiomeric excess (ee) value. The potential of microbial EH to produce chiral epoxides and vicinal diol has prompted researchers to explore their use in the synthesis of epoxides and diols with high ee values.

Concomitant Addition and Acetalization of α,β-Unsaturated Aldehydes with Diols

  • Jeon, Kyu-Ok;Yu, Ji-Sook;Lee, Chang-Kiu
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1653-1656
    • /
    • 2004
  • ${\alpha},{\beta}$-Unsaturated aldehydes such as acrolein and crotonaldehyde were reacted with diols in the presence of conc. sulfuric acid to give products of which concomitant addition to C-C double bond and acetalization took place. Boron trifluoride etherate and titanium tetrachloride gave only acetalization products.

Effects of Diols on the foaming and emulsion properties in surfactant solutions

  • Lee, Giam;Oh, Seong-Geun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.488-498
    • /
    • 2022
  • The effects of 1,3-Butanediol, 1,2-Pentanediol, and 1,2-Hexanediol in surfactant solutions on cmc, surface tension, foaming and emulsifying properties were determined. The addition of diols in aqueous surfactant solution decreased cmc and surface tension, and enhanced the foaming and emulsifying power. This trend is more significant by the longer hydrocarbon chain length of the diols. This property was confirmed because the diol's alkyl chain and the hydrophobic interaction with the surfactant reduce the cohesive force of water and increase the interaction between the head groups of the surfactant at interface. In addition, MIC test was conducted to determine the preservative power of each diol, and as a result, the antibacterial activity was effective in the order of 1,2-HDO > 1,2-PDO > 1,3-BDO. The results of this study show that diol can be applied to cosmetics as an auxiliary surfactant and antibacterial agent.

Effect of Different GC Columns on the Quantitative Analysis of Long Chain Alkyl Diols (LCDs) (특성이 다른 GC 컬럼이 long chain alkyl diols (LCDs)의 정량 분석에 미치는 영향)

  • GAL, JONG-KU;KIM, JUNG-HYUN;NAM, SEUNG-IL;SHIN, KYUNG-HOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.2
    • /
    • pp.45-55
    • /
    • 2017
  • Long chain alkyl diols (LCDs) have been reported in sediments from various marine environments. Rampen et al. (2012) introduced the paleo-sea surface temperature (SST) proxy, Long chain Diol Index (LDI) based on the relative abundance of $C_{30}$ 1,15-diol, $C_{28}$ 1,13-diol, and $C_{30}$ 1,13-diol. In general, CP-Sil5CB and DB-5ms columns have been used for the quantitative and qualitative analysis of LCDs with a GC-MS. In this study, we examined the effect of three different columns (CP-Sil5CB, HP-5ms and DB-5) on the quantitative analysis of LCDs using marine sediments from the East Sea of Korea and the western Arctic Ocean. In general, our study showed that the results of CP-Sil5CB differed significantly from those of HP-5ms and DB-5. However, the differences of the LDI-derived SSTs among three columns were $0.1-0.2^{\circ}C$ for the East Sea and $0.2-0.7^{\circ}C$ for the western Arctic Ocean, which were well within the calibration error range (${\pm}1{\sigma}$). Accordingly, our study showed that the use of different columns resulted in significant differences of LCDs concentrations, but its effect on the LDI was relatively insignificant. Therefore, it appears that the different columns can be used for the paleo-SST reconstruction in the East Sea and the western Arctic Ocean using the LDI proxy.