• 제목/요약/키워드: diode laser

검색결과 1,017건 처리시간 0.023초

이층 박막 구조에서 ITO 전극의 레이저 직접 패터닝 시레이저 식각 패턴 중첩 비율의 변화 (Overlapping Rates of Laser Spots on the Laser Direct Patterning of ITO Electrode in the Double-layer Structure of Thin Film)

  • 왕건훈;박정철;권상직;조의식
    • 한국전기전자재료학회논문지
    • /
    • 제25권5호
    • /
    • pp.377-380
    • /
    • 2012
  • Laser direct patterning of indium tin oxide(ITO) is one of new methods of direct etching process to replace the conventional photolithography. A diode pumped Q-switched Nd:$YVO_4$ (${\lambda}$= 1,064 nm) laser was used to produce ITO electrode on various transparent oxide semiconductor films such as zinc oxide(ZnO). The laser direct etched ITO patterns on ZnO were compared with those on glass substrate and were considered in terms of the overlapping rate of laser beam. In case of the laser etching on double-layer, it was possible to obtain the higher overlapping rate of laser beam.

Selective Laser Direct Patterning of Indium Tin Oxide on Transparent Oxide Semiconductor Thin Films

  • Lee, Haechang;Zhao, Zhenqian;Kwon, Sang Jik;Cho, Eou Sik
    • 반도체디스플레이기술학회지
    • /
    • 제18권4호
    • /
    • pp.6-11
    • /
    • 2019
  • For a wider application of laser direct patterning, selective laser ablation of indium tin oxide (ITO) film on transparent oxide semiconductor (TOS) thin film was carried out using a diode-pumped Q-switched Nd:YVO4 laser at a wavelength of 1064 nm. In case of the laser ablation of ITO on indium gallium zinc oxide (IGZO) film, both of ITO and IGZO films were fully etched for all the conditions of the laser beams even though IGZO monolayer was not ablated at the same laser beam condition. On the contrary, in case of the laser ablation of ITO on zinc oxide (ZnO) film, it was possible to etch ITO selectively with a slight damage on ZnO layer. The selective laser ablation is expected to be due to the different coefficient of thermal expansion (CTE) between ITO and ZnO.

High Repetition Wavelength-locked 878.6 nm LD Dual-end-pumped Nd:YVO4 1064 nm Laser

  • Li, Yue;Yu, Yong-Ji;Wang, Yu-Heng;Liu, Hang;Liu, He-Yan;Jin, Guang-Yong
    • Current Optics and Photonics
    • /
    • 제2권6호
    • /
    • pp.582-588
    • /
    • 2018
  • A $Nd:YVO_4$ laser dual-end-pumped by a wavelength-locked 878.6 nm laser diode is presented. At the repetition rate of 500 KHz, the absorbed pump power of 58 W, an output power of 26.1 W at 1064 nm is obtained, corresponding to an optical-optical efficiency of 45%. The pulse width is 44.2 ns. Meanwhile, the effects of traditional 808 nm pumping and 878.6 nm dual-end-pumping on the output laser beam quality and pulse width are compared and analyzed in an experiment.

Experimental Investigation of a High-repetition-rate Pr3+:YLF Laser with Single-frequency Oscillation

  • Dai, Weicheng;Jin, Long;Dong, Yuan;Jin, Guangyong
    • Current Optics and Photonics
    • /
    • 제5권6호
    • /
    • pp.721-729
    • /
    • 2021
  • We demonstrate a Pr3+:YLF 639.7-nm laser with single-frequency output based on the Q-switched pre-lase technology, pumped by a fiber-coupled GaN blue laser diode. The pre-lase technology is realized by the step-type loss of the acousto-optical Q-switched device. The conclusions of the theoretical research are verified experimentally. The mode-suppression ratio was 44 dB at the single-frequency laser output. Detection by interferometer verified the realization of the stable single-frequency laser. In addition, the emission spectrum had a linewidth of 139.9 MHz, measured by Fabry-Perot interferometer. The single-frequency laser's single-peak power was over 19.7 W with 98.8-ns pulse duration, obtained under an absorption power of 1.74 W.

Development of Minimally Invasive Mid-infrared Lipolysis Laser System for Effective Fat Reduction

  • Lee, Ji-Young;Ryu, Han Young;Seo, Young-Seok
    • Medical Lasers
    • /
    • 제10권2호
    • /
    • pp.82-89
    • /
    • 2021
  • Background and Objectives Due to changes in diet and lifestyle, the number of obese people worldwide is steadily increasing. Obesity has an adverse effect on a healthy life, so it needs treatment and improvement. Research related to this is continuously being conducted. Materials and Methods The laser system to compact designed using 808 nm laser diode and Neodymium Yttrium orthovanadate generates a 1064 nm wavelength, the periodically polarized nonlinear crystal pumping laser beam. The pulsed 1064 nm wavelength beam passing through the AO Q-switch is used as the pumping light of the nonlinear optical crystal and is irradiated to the periodic polarized nonlinear optical crystal with a quasi-phase matching period. Nonlinear optical crystals use an oven to control the temperature to generate the desired 1980 nm and 2300 nm wavelengths. Results The 1980 nm and 2300 nm wavelengths generated by temperature control of nonlinear optical crystals are effective for lipolysis. A fiber catheter was used so that the laser could be directly irradiated to the fat cells. In particular, the new wavelength (1980 nm, 2300 nm) can increase the fat reduction effect with low energy (1.3 W). When a laser with a combination wavelength of 1980 nm and 2300 nm was used, an average lipolysis effect of 20% was obtained. Conclusion A mid-infrared lipolysis laser system with excellent absorption of fat and water has been developed. We conducted a princlinical study to confirm the efficacy and safety of the lipolysis laser system, and obtained good results for lipolysis with low energy.

DPSS UV Laser와 습식 식각을 이용한 금형강 미세 가공 (Micromachining for plastic mold steel using DPSS UV laser and wet etching)

  • 민경익;김재구;조성학;최두선;황경현
    • 한국레이저가공학회지
    • /
    • 제12권3호
    • /
    • pp.1-6
    • /
    • 2009
  • This paper describes the method for the fabrication of micro dot array on a plastic mold steel using DPSS (diode pumped solid-states) UV laser and wet etching process. We suggest the process of the ablation of a photoresist (PR) coated on plastic mold steel and wet etching process using solutions of various concentrations of $FeCl_3$, $HNO_3$ in water as etchant. This method makes it possible to fabricate metallic roller mold because the microstructures are directly fabricated on the metal surface. In the range of operating conditions studied, $17\;{\mu}J$ laser pulse energy and 50 ms laser exposure time, an etchant containing 40wt% $FeCl_3$, 5wt% $HNO_3$ and etch time for 45 s gave the $10\;{\mu}m$ of micro dot pattern on plastic mold steel.

  • PDF

트랙 이행거리에 따른 SKD61 재질의 레이저 메탈 디포지션 기초 특성 분석 (Effect Analysis in Laser Metal Deposition of SKD61 by Track Pitch)

  • 김원혁;정병훈;오명환;최성원;강대민
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.94-99
    • /
    • 2014
  • In this study, AISI M2 powder was selected primarily through various literature in order to improve the hardness and wear resistance. Among the laser metal deposition parameters, laser power was studied to improve the deposition efficiency in the laser metal deposition using a diode pumped disk laser. SKD61 hot work steel plate and AISI M2 powder were used as a substrate and powder for laser metal deposition, respectively. Fixed parameters are CTWD, focal position, travel speed, powder feed rate, etc. Experiments for the laser metal deposition were carried out by changing laser power. Through optical micrographs analysis of cross-section in LMD track, effect of the major parameters were predicted by track pitch. As the track pitch increased, so the reheated zone width, the overlap width and the minimum thickness was decreased. The hardness was decreased in the HAZ area, the hardness in the reheated HAZ area was decreased significantly and regularly in particular.

Fabry-Perot 레이저 다이오드의 Missing Mode (Missing Modes in Fabry-Perot Laser Diodes)

  • 이동수
    • 조명전기설비학회논문지
    • /
    • 제19권1호
    • /
    • pp.9-14
    • /
    • 2005
  • Fabry-Perot 레이저 다이오드의 missing mode의 원인으로 의심되는 활성층 내의 구조적 결함과 리플의 영향을 TDLM(time domain laser model)방식을 사용하여 모델링하였다. 보다 정확한 모델링의 결과를 얻기 위하여 여러가지 비선형 효과를 추가 고려하였다. 이를 이용하여 레이저 다이오드를 시뮬레이션하였고, 모드 스펙트럼(mode spectrum)을 구하였다. 실제 레이저 다이오드의 missing mode를 측정하기 위한 실험 장비를 구성하여 측정 결과를 추출하였고, 시뮬레이션과 측정 실험 결과로부터 결론을 내렸다.

펨토초 레이저를 이용한 플렉시블 ITO 패터닝 연구 (Femtosecond laser pattering of ITO film on flexible substrate)

  • 손익부;김영섭;노영철
    • 한국레이저가공학회지
    • /
    • 제13권1호
    • /
    • pp.11-15
    • /
    • 2010
  • Indium tin oxide (ITO) provides high electrical conductivity and transparency in the visible and near IR (infrared) wavelengths. Thus, it is widely used as a transparent electrode for the fabrication of liquid crystal displays (LCDs) and organic light emitting diode displays (OLRDs), photovoltaic devices, and other optical applications. Lasers have been used for removing coating on polymer substrate for flexible display and electronic industry. In selective removal of ITO layer, laser wavelength, pulse energy, scan speed, and the repetition rate of pulses determine conditions, which are efficient for removal of ITO coating without affecting properties of the polymer substrate. ITO coating removal with a laser is more environmentally friendly than other conventional etching methods. In this paper, pattering of ITO film from polymer substrates is described. The Yb:KGW femtosecond laser processing system with a pulse duration of 250fs, a wavelength of 1030nm and a repetition rate of 100kHz was used for removing ITO coating in air. We can remove the ITO coating using a scanner system with various pulse energies and scan speeds. We observed that the amount of debris is minimal through an optical and a confocal microscope, and femtosecond laser pulses with 1030nm wavelength are effective to remove ITO coating without the polymer substrate ablation.

  • PDF

Nd:YVO4 Laser Patterning of Various Transparent Conductive Oxide Thin Films on Glass Substrate at a Wavelength of 1,064 nm

  • Wang, Jian-Xun;Kwon, Sang Jik;Cho, Eou Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권2호
    • /
    • pp.59-62
    • /
    • 2013
  • At an infra-red (IR) wavelength of 1,064 nm, a diode-pumped Q-switched $Nd:YVO_4$ laser was used for the direct patterning of various transparent conductive oxide (TCO) thin films on glass substrate. With various laser beam conditions, the laser ablation results showed that the indium tin oxide (ITO) film was removed completely. In contrast, zinc oxide (ZnO) film was not etched for any laser beam conditions and indium gallium zinc oxide (IGZO) was only ablated with a low scanning speed. The difference in laser ablation is thought to be due to the crystal structures and the coefficient of thermal expansion (CTE) of ITO, IGZO, and ZnO. The width of the laser-patterned grooves was dependent on the film materials, the repetition rate, and the scanning speed of the laser beam.