• Title/Summary/Keyword: dinoflagellates

Search Result 272, Processing Time 0.025 seconds

Detection of Fish Killing Dinoflagellates Cochlodinium polykrikoides and Karlodinium veneficum (Dinophyceae) in the East China Sea by Real-time PCR

  • Park, Tae-Gyu;Kang, Yang-Soon;Park, Young-Tae;Bae, Heon-Meen;Lee, Yoon
    • ALGAE
    • /
    • v.24 no.2
    • /
    • pp.105-110
    • /
    • 2009
  • The rDNAs of figh-killing dinoflagellates Cochlodinium polykrikoides and Karlodinium veneficum were detected from the East China Sea by species-specific real-time PCR probes. Sequence analysesusing the partial ITS sequences from the real-time PCR products showed identical sequences with C. Polykrikoides and K. veneficum, respectively and low expectation values (E-value) of less than 1e-5 suggesting the presence of these organisms in the East Ching Sea shelf water that flows into the Tsushima Strait and the Yellow Sea.

New Records of Benthic Dinoflagellates of Four Genera (Bispidodinium, Cabra, Prorocentrum, Sinophysis) from the Coastal Beach of Korea

  • Kang, Su-Min;Lee, Joon-Baek
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.3
    • /
    • pp.252-259
    • /
    • 2018
  • A research probing for the unrecorded and taxonomically undescribed indigenous species has been initiated since 2006. Samples were collected from an intertidal zone along the coasts of Korea as well as around the Jeju Island. We have found five unrecorded species of four genera belonging to the order Dinophysiales, Gymnodiniales, Peridiniales, and Prorocentrales. The species are as follows, Sinophysis canaliculata (2017) Bispidodinium angelaceum (2015), Cabra armorica (2016), Prorocentrum bimaculatum (2017), and P. tsawwassenense (2017) (note; The numbers in parenthesis refer to the year in which the species was reported as unrecorded indigenous species by National Institute of Biological Resources, NIBR hereafter).

Newly recorded unarmored dinoflagellates in the family Kareniaceae(Gymnodiniales, Dinophyceae) in brackish and coastal waters of Korea

  • Cho, Minji;Choi, Hojoon;Nam, Seung Won;Kim, Sunju
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.2
    • /
    • pp.236-244
    • /
    • 2021
  • Unarmored dinoflagellates, in the family Kareniaceae, include harmful or toxic bloom-forming species, which are associated with massive fish kills and mortalities of marine organisms worldwide. The occurrence and distribution of the toxigenic species in the family Kareniaceae were investigated in the brackish and coastal waters of Korea between July 2018 and October 2020. During the survey, we collected seven newly recorded species; Karenia papilionacea, Karlodinium digitatum, Karl. veneficum, Karl. zhouanum, Takayama acrotrocha, T. helix, and T. tasmanica. A total of fifteen strains of the seven taxa were successfully established as clonal cultures and examined using LM, SEM, and molecular phylogeny inferred from LSU rDNA sequences. Herein, we present the taxonomic information, morphological features, and molecular phylogenetic positions of the unrecorded dinoflagellate species collected from Korean coastal waters.

New record of the cold freshwater dinoflagellate Palatinus apiculatus (Dinophyceae) from the Paldang Reservoir, Korea

  • Kim, Taehee;Ki, Jang-Seu
    • Journal of Species Research
    • /
    • v.11 no.3
    • /
    • pp.162-168
    • /
    • 2022
  • Compared to marine dinoflagellates, freshwater species are rarely recorded in Korea. In the present study, we isolated a freshwater dinoflagellate, Palatinus, from the Paldang Reservoir, Korea, in December 2021. The overall cell shape was ovoid, and the cell size was 34.3 ㎛ in length (25.8-39.5 ㎛) and 28.4 ㎛ in width (21.5-34 ㎛). An eyespot was usually observed near the sulcal region. The Kofoidian plate formula of the species was determined to be 4', 2a, 7", 6c, 5s, 5''', and 2''''. Apical pore complex was not observed. However, variations in the cingular plate caused by the fusion of 3C and 4C were observed. Analyses of 28S rDNA sequences revealed that the unidentified species is 100% similar to Palatinus apiculatus, and clustered together in the same lineage in the phylogenetic tree (100% bootstrap value). Our findings confirmed that the isolated dinoflagellate is Palatinus apiculatus, which was discovered for the first time in Korean freshwaters.

Bluefin tuna (Thunnus thynnus L.) Aquaculture in Yokjido, Tongyeong : Fluctuation of Phytoplankton and Reasonable Sinking Depth in Floating Cage (참다랑어 양식 : 욕지도 식물플랑크톤 군집구조 및 부침식 가두리 적정 침강수심)

  • Cho, Eun-Seob;Hwang, Hyung-Kyu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.4
    • /
    • pp.381-386
    • /
    • 2010
  • We have cultured the bluefin tuna in Yokjido, Tongyeong with floating cage which was vulnerable to harmful dinoflagellate, Cochiodinium polykrikoides. This study inspected a vertical migration of phytoplankton and Chl-a for reasonable sinking depth in floating cage. Furthermore, we analyzed the fluctuation of the phytoplankton including harmful dinoflagellates occurring in Yokgido for 6 years. Total cell density showed a significant monthly variation and the flora was predominated with diatoms. Gymnodinium sp. occurred 19 times, the greatest number of occurrence in all kinds of dinoflagellates during summer. In particular, the total number of occurrence at C. polykrikoides was 8, and harmful dinoflagellates such as Karenia brevis/Fibrcapsa japonica occurred. The relationship between Chl-a concentration/total cell number and sunset/sunrise was significant and reasonable sinking depth in floating cage was found to be at least 3m from the water surface, which was associated with massive fish kills caused by C. polykrikoides.

Phylogenetic Analysis of Harmful Algal Bloom (HAB)-Causing Dinoflagellates Along the Korean Coasts, Based on SSU rRNA Gene

  • Kim, Se-Hee;Kim, Keun-Yong;Kim, Chang-Hoon;Lee, Woo-Sung;Chang, Man;Lee, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.959-966
    • /
    • 2004
  • Twenty-three cultures of harmful algal bloom (HAB)-(causing dinoflagellates were isolated from the coastal waters of Korea. For each of the 14 morphospecies, the nuclearencoded small subunit (SSU) rDNA was analyzed to determine the phylogenetic relatedness of the species. Despite temporal and spatial isolation, 3-4 clonal cultures of Alexandrium catenella, Cochlodinium polykrikoides, and Gymnodinium catenatum had 100% identical SSU rDNA sequences. In contrast, heterogeneities in the SSU rDNA sequences were observed in Akashiwo sanguinea and Lingulodinium polyedrum strains. Extreme sequence polymorphism was shown within the SSU rRNA genes of an Al. tamarense clonal culture. A homology search in GenBank revealed that 11 dinoflagellate species were located in clusters corresponding to their morphological classification. The SSU rDNA sequences of C. polykrikoides, Gyrodinium instriatum, and Pheopolykrikos hartmannii, which were determined for the first time in this study, showed the following phylogenetic relationships: C. polykrikoides formed an independent branch separated from other dinoflagellates; Gyr. instriatum was placed in a monophyletic group with Gyr. dorsum and Gyr. uncatenum; and Ph. hartmanii, which forms a distinct two-celled pseudocolony, belonged to Gymnodinium sensu Hansen and Moestrup.

Feeding by the newly described heterotrophic dinoflagellate Aduncodinium glandula: having the most diverse prey species in the family Pfiesteriaceae

  • Jang, Se Hyeon;Jeong, Hae Jin;Lim, An Suk;Kwon, Ji Eun;Kang, Nam Seon
    • ALGAE
    • /
    • v.31 no.1
    • /
    • pp.17-31
    • /
    • 2016
  • To explore the feeding ecology of the newly described heterotrophic dinoflagellate Aduncodinium glandula in the family Pfiesteriaceae, its feeding behavior and prey species were investigated. Additionally, the growth and ingestion rates of A. glandula on the mixotrophic dinoflagellates Heterocapsa triquetra and Akashiwo sanguinea, its optimal and suboptimal prey, respectively were measured. A. glandula fed on prey through a peduncle after anchoring to the prey using a tow filament. A. glandula ate all algal prey and perch blood cells tested and had the most diverse prey species in the family Pfiesteriaceae. Unlike for other pfiesteriacean species, H. triquetra and A. sanguinea support the positive growth of A. glandula. However, the cryptophytes Rhodomonas salina and Teleaulax sp. and the phototrophic dinoflagellate Amphidinium carterae did not support the positive growth of A. glandula. Thus, A. glandula may have a unique kind of prey and its optimal prey differs from that of the other pfiesteriacean dinoflagellates. With increasing mean prey concentration, the growth rates of A. glandula on H. triquetra and A. sanguinea increased rapidly and then slowed or became saturated. The maximum growth rates when feeding on H. triquetra and A. sanguinea were 1.004 and 0.567 d−1, respectively. Further, the maximum ingestion rates of A. glandula on H. triquetra and A. sanguinea were 0.75 and 1.38 ng C predator−1 d−1, respectively. There is no other pfiesteriacean species having H. triquetra and A. sanguinea as optimal and suboptimal prey. Thus, A. glandula may be abundant during blooms dominated by these species not preferred by the other pfiesteriacean dinoflagellates.