• Title/Summary/Keyword: dinoflagellate bloom

Search Result 74, Processing Time 0.024 seconds

Dynamics of Water Environmental Factors and Phytoplankton Before and After Inflow of Seawater in Shingwa Reservoir (시화호에서 해수유입 전.후의 수환경 요인과 식물플랑크톤 동태)

  • 신재기;김동섭;조경제
    • Journal of Environmental Science International
    • /
    • v.9 no.2
    • /
    • pp.115-123
    • /
    • 2000
  • The dynamics of water quality and phytoplankton population had examined by monthly sampling from the upper to the lower part of watergate in an artificial Shihwa Reservoir in which situated near newly cities and incustrial complex on the west coast of Korea from January 1997 to December 1998. Among environmental factors, yearly average concentration of chl-a, TN and TP seemed to eutrophic or hypertrophic conditions that ranged 146.4~245.8 $\mu\textrm{g}$/$\ell$, 1.6~2.7 mg N/$\ell$, 258~448 $\mu\textrm{g}$ P/$\ell$, 26.9~80.7 $\mu\textrm{g}$/$\ell$, 1.0~2.4 mgN/$\ell$ and 74~239 $\mu\textrm{g}$P/$\ell$ respectively. Water quality was extremely deteriorated to consistently accumulation into inner reservoir by load of pollutants from autochthonous and allochthonous until early July 1997 after embankment. Water pollution of Shihwa Reservoir was remarkble on the biological condition with largely persistent bloom of phytoplankton and increase rate of standing crops was 2.4/yr. The development trend of phytoplankton in water ecosystem were closely related to increse and decrease of physico-chemical factors and those scale seemed to control by nutrient contents. Inflow of seawater into reservoir to object of repair of water quality. As to see dominant species, composition of those composed to mostly freshwater algae before inflow of seawater such as Selenastrum capricornutum of green algae, cyclotella atomus, C. meneghiniana of diatom and Microcystis spp. of blue-green algae and the other hand brackish algae were dominated after inflow of seawater such as Chaetoceros dicipiens, Skeletonema costatum of diatom, Dinophysis acuminata, Gymnodinium mikimotoi, G. sanguineum, Gyrodinium spirale, Prorocentrum minmum of dinoflagellate and Eutreptiella gymnastica of euglenoid. Moreover, small flagellates including Chroomonas spp. of cryptomonad were abundant throughout the year. The cause of water deterioration during fill of the freshwater were complexly supported with extra and intra parameters. The variation pattern of phytoplankton were related to water temperature and salinity by inflow of seawater based to plentiful nutrients. The dynamics of phytoplankton were assessed to ecosystem that clearly condition of dominant by unique or a few angel species seasonally.

  • PDF

Interactions between the voracious heterotrophic nanoflagellate Katablepharis japonica and common heterotrophic protists

  • Kim, So Jin;Jeong, Hae Jin;Jang, Se Hyeon;Lee, Sung Yeon;Park, Tae Gyu
    • ALGAE
    • /
    • v.32 no.4
    • /
    • pp.309-324
    • /
    • 2017
  • Recently, the heterotrophic nanoflagellate Katablepharis japonica has been reported to feed on diverse red-tide species and contribute to the decline of red tides. However, if there are effective predators feeding on K. japonica, its effect on red tide dynamics may be reduced. To investigate potential effective protist predators of K. japonica, feeding by the engulfment-feeding heterotrophic dinoflagellates (HTDs) Oxyrrhis marina, Gyrodinium dominans, Gyrodinium moestrupii, Polykrikos kofoidii, and Noctiluca scintillans, the peduncle-feeding HTDs Luciella masanensis and Pfiesteria piscicida, the pallium-feeding HTD Oblea rotunda, and the naked ciliates Strombidium sp. (approximately $20{\mu}m$ in cell length), Pelagostrobilidium sp., and Miamiensis sp. on K. japonica was explored. We found that none of these heterotrophic protists fed on actively swimming cells of K. japonica. However, O. marina, G. dominans, L. masanensis, and P. piscicida were able to feed on heat-killed K. japonica. Thus, actively swimming behavior of K. japonica may affect feeding by these heterotrophic protists on K. japonica. To the contrary, K. japonica was able to feed on O. marina, P. kofoidii, O. rotunda, Miamiensis sp., Pelagostrobilidium sp., and Strombidium sp. However, the specific growth rates of O. marina did not differ significantly among nine different K. japonica concentrations. Thus, K. japonica may not affect growth of O. marina. Our findings suggest that the effect of predation by heterotrophic protists on K. japonica might be negligible, and thus, the effect of grazing by K. japonica on populations of red-tide species may not be reduced by mortality due to predation by protists.

New Algicidal Compounds from a Marine Algicidal Bacterium against Cochlodinium polykrikoides

  • Jeong, Seong-Yun;Kim, Min-Ju;Lee, Sang-Youb;Son, Hong-Joo;Lee, Sang-Joon
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2006.11a
    • /
    • pp.285-289
    • /
    • 2006
  • In screening of algicidal bacteria, we isolated a marine bacterium which had potent algicidal effects on harmful algal bloom (HAB) species. This organism was identified as a strain very close to Bacillus subtilisby 16S rRNA gene sequencing. This bacterium, Bacillus sp. SY-1, produces very active algicidal compounds against the harmful dinoflagellate Cochlodinium polykrikoides. We isolated three algicidal compounds (MS 1056, 1070, 1084) and identified them by amino acid analyses, fast atom bombardment mass spectrometry (FAB-MS), infrared spectroscopy (IR), $^1H$, $^{13}C$, and extensive two-dimensional nuclear magnetic resonance (2D NMR) techniques including $^1H-^{15}N$ HMBC analysis. One of them, MS 1056, contains a b-amino acid residue with an alkyl side chain of $C_{15}$. MS 1056, 1070, and 1084 showed algicidal activities against C. polykrikoides with an $LC_{50}$ (6 hrs) of 2.3, 0.8, $0.6\;{\mu}g/ml$, respectively. These compounds also showed significant algicidal activities against other harmful dinoflagellates and raphidophytes. In contrast, MS 1084 showed no significant growth inhibition against various organisms coexisting with HAB species in natural environments, including bacteria, eukaryotic microalgae, and cyanobacteria, although it inhibited growth of some fungi and yeasts. These observations imply that algicidal bacterium Bacillus sp. SY-1 and its algicidal compounds could play an important role in regulating the onset and development of HABs in the natural environments.

  • PDF

The Outbreak, Maintenance, and Decline of the Red Tide Dominated by Cochlodinium polykrikoides in the Coastal Waters off Southern Korea from August to October, 2000 (2000년 여름 남해안에 나타난 Cochlodinium polykrikoides 우점 적조의 발생 특성)

  • Jung, Chang-Su;Lee, Chang-Kyu;Cho, Yong-Chul;Lee, Sam-Geun;Kim, Hak-Gyoon;Chung, Ik-Kyo;Lim, Wol-Ae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.2
    • /
    • pp.68-77
    • /
    • 2002
  • We investigated the outbreak, maintenance, and decline of the red tide dominated by C. polykrikoides in the coastal waters off Southern Korea from August to October, 2000, by combining field data and NOAA satellite images. In general, the C. polykrikoides blooms, which have occured annually in Korean coastal waters from 1995 to 1999, initiate between late August and early September around Narodo Island and expand to the whole area of the southern coast. However, initiation and short-term change of the bloom of 2000 were quite different from the pattern observed previously. In mid-August, thermal fronts in sea surface temperature(SST) were formed: 1) between the Tsushima Warm Current Water (TWCW) and the Southern Korean Coastal Waters (SKCW), 2) between the jindo cold water mass and the southwestern coastal waters, and 3) between the upwelled cold waters in the southeast coast and the offshore warm waters. Free-living cells of C. polykrikoides were concentrated in these frontal regions. In late August, the thermal front TWCW-SKCW approached the mouth of Yeosuhae Bay where Seomjin River water and anthropogenic pollutants from the Industrial Complex of Gwangyang Bay are discharged. In the blooms of 2000 initiated in Yeosuhae Bay in late August, the dominant species, C. polykrikoides, co-occured with Alexandrum tamarense, Gymnodinium mikimotoi, Skeletonema coastatum, and Chaetoceros spp. Two typhoons, 'Prapiroon' and 'Saomai' during and the C. polykrikoides bloom probably affected the abundance of this species. After the former typhoon passed the Korean Peninsula, cell growth of C. polykrikoides was maximal, but after the latter typhoon, the C. polykrikoides bloom disappeared (20 September). On 5 October, the blooms dominated by C. polykrikoides broke out within the coastal waters of Jinhae Bay and Hansan-Keoje Bay. NOAA satellite images showed that the isothermal line of 22$^{\circ}C$ extended into Jinhae Bay. In this bloom, C. polykrikoides also occurred simultaneously with Akashiwo sanguinea(=Gym-nodinium sangunium), a common red tide-forming dinoflagellate species in fall and winter in these coastal bays.

Change of Blooming Pattern and Population Dynamics of Phytoplankton in Masan Bay, Korea (마산만 식물플랑크톤의 대발생 양상의 변화와 군집 동태)

  • Lee, Ju-Yun;Han, Myung-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.147-158
    • /
    • 2007
  • To clarify the bloom pattern and species succession in phytoplankton community, the population dynamics with the determination of physico-chemical factors have been studies in Masan Bay, the south sea of Korea, for the periods November 2003-October 2004. Concentration of $NH_4-N$ was always higher than that of $NO_3-N$, which was similar level as compared to other costal areas. $PO_4-P$ concentration was lower than those in other coastal areas but similar to oligotrophic environments. Thus, phosphate seems the limiting nutrient rather than nitrogen. $SiO_2-Si$ concentration was also low as compared to other costal areas. Si:P ratio was low from autumn to winter, suggesting silicate and/or phosphate limitation during this period. The cell density of phytoplankton was high in winter 2003 and early autumn 2004. The carbon biomass was high in winter 2003 and summer 2004. And chlorophyll-a concentration was high in late autumn 2003 and summer 2004. Among 78 species of phytoplankton found in the bay during the investigated period, dominant species were two diatoms of Cylindrotheca closterium, Skeletonema costatum, and three dinoflagellates of Heterocapsa triquetra, Prorocentrum minimum, P. triestinum, and one raphidophyte of Heterosigma akashiwo. P. minimum dominated from late autumn to winter, but it was replaced by H. triquetra in late winter. P. triestinum dominated from late spring to early summer. Simultaneously, H. akashiwo cell density steadily increased, and it became dominant with C. closterium in late summer. With decreasing of H. akashiwo and C. closterium, S. costatum became the most dominant species in autumn. The canonical analyses showed that total phytoplankton cell density related to diatom cell density and it was affected by temperature, and concentrations of $NO_3-N\;and\;PO_4-P$. The carbon bio-mass and $chlorophyll-{\alpha}$ concentration related to diatom- and dinoflagellate cell densities and these were affected by flagellate cell density, salinity, and concentrations of $SiO_2-Si\;and\;PO_4-P$. Last six years monitoring data in Masan city obtained from Korean Meteorological Agency indicates gradual increase in air temperature. And the precipitation decreased especially in spring season. The winter bloom found in 2003 may be caused by the increase in the temperature and this bloom subsequently induced the nutrients depletion, which continued until next spring probably due to no precipitation. Therefore, the spring bloom, which had been usually observed in the bay, might disappear in 2004.

Early Detection of Cochlodinium polykrikoides (Dinophyceae) Blooms in Namhaedo in 2019 Using Quantitative Real-Time PCR (qPCR) (Quantitative real-time PCR (qPCR)을 이용하여 2019년 남해도 해역에서 발생한 Cochlodinium polykrikoides (Dinophyceae) 적조의 조기검출)

  • Park, Tae Gyu;Kim, Jin Joo;Song, Seon Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.674-680
    • /
    • 2020
  • Quantitative real-time polymerase chain reaction (qPCR) was applied for the early detection of red tides in the coastal areas of South Gyeongsang in 2019. Cochlodinium polykrikoides (Dinophyceae) was detected at very low cell densities (0.0015~0.0058 cells mL-1) in early June, but its cell density increased by up to 0.163 cells mL-1 in mid-August. Higher cell densities were detected mainly in Namhaedo using both qPCR and microscopy (maximum 24 cells mL-1) in late-August. Accordingly, a red tide alert was issued on September 2 (maximum 200 cells mL-1) on this island. C. polykrikoides cell density in Namhaedo peaked on September 11 (12,000 cells mL-1). Our results indicate that C. polykrikoides was detected at very low cell density in Namhaedo prior to bloom, which occurred in the same area. Therefore, qPCR is a useful tool to detect even at very low cell densities of C. polykrikoides for early warning of blooms.

Changes in Phytoplankton Communities and Environmental Factors in Saemangeum Artificial Lake, South Korea between 2006 and 2009 (2006년~2009년 새만금호에서 식물플랑크톤 군집과 환경요인의 변화)

  • Choi, Chung Hyun;Jung, Seung Won;Yun, Suk Min;Kim, Sung Hyun;Park, Jong Gyu
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.3
    • /
    • pp.213-224
    • /
    • 2013
  • Between May 2006 and November 2009, we investigated the relationship between fluctuations in environmental factors and phytoplankton communities in Saemangeum Artificial Lake, South Korea. Nutrient concentrations in the lake increased because of the inflow of water from Mankyung and Dongjin Rivers during the summer rainy season; in particular, high concentrations were detected at an inner zone close to the estuaries. During the summer rainy season, salinity at the inner zone reduced more rapidly than that at the other zones, and it was similar to the changes in nutrient concentrations. Variations in phytoplankton communities were caused by fluctuations in environmental factors: the abundance of phytoplankton at the inner zone was higher than that at the other zones. Diatoms were the dominant species in the phytoplankton communities. A small centric diatom, Skeletonema costatum like species, was predominant, with a mean abundance of 19.5% in Saemangeum lake. Because of accelerated eutrophication in the lake, phytoplankton abundance increased continuously and the total number of species present in the community decreased. In particular, some dinoflagellates could intermittently cause red tides during low temperature and salinity conditions (at the inner zone). In 2006~2007, a red tide-forming dinoflagellate, Prorocentrum minimum, was the predominant species, while Heterocapsa triquetra, Karlodinium veneficum, and Heterocapsa rotundata were the newly recorded species in late 2008 to early 2009. Therefore, the dynamics of phytoplankton communities under the perennially eutrophic conditions in Saemangeum lake appear to be primarily affected by changes in water temperature and salinity. In particular, the growth of harmful algae may have been accelerated by the low salinity and temperature conditions during the spring season at the inner zone.

Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: II. Heterotrophic protists and their grazing impacts on red-tide organisms

  • Lim, An Suk;Jeong, Hae Jin;Seong, Kyeong Ah;Lee, Moo Joon;Kang, Nam Seon;Jang, Se Hyeon;Lee, Kyung Ha;Park, Jae Yeon;Jang, Tae Young;Yoo, Yeong Du
    • ALGAE
    • /
    • v.32 no.3
    • /
    • pp.199-222
    • /
    • 2017
  • Occurrence of Cochlodinium polykrikoides red tides have resulted in considerable economic losses in the aquaculture industry in many countries, and thus predicting the process of C. polykrikoides red tides is a critical step toward minimizing those losses. Models predicting red tide dynamics define mortality due to predation as one of the most important parameters. To investigate the roles of heterotrophic protists in red tide dynamics in the South Sea of Korea, the abundances of heterotrophic dinoflagellates (HTDs), tintinnid ciliates (TCs), and naked ciliates (NCs) were measured over one- or two-week intervals from May to Nov 2014. In addition, the grazing impacts of dominant heterotrophic protists on each red tide species were estimated by combining field data on red tide species abundances and dominant heterotrophic protist grazers with data obtained from the literature concerning ingestion rates of the grazers on red tide species. The abundances of HTDs, TCs, and NCs over the course of this study were high during or after red tides, with maximum abundances of 82, 49, and $35cells\;mL^{-1}$, respectively. In general, the dominant heterotrophic protists differed when different species caused red tides. The HTDs Polykrikos spp. and NCs were abundant during or after C. polykrikoides red tides. The mean and maximum calculated grazing coefficients of Polykrikos spp. and NCs on populations of co-occurring C. polykrikoides were $1.63d^{-1}$ and $12.92d^{-1}$, respectively. Moreover, during or after red tides dominated by the phototrophic dinoflagellates Prorocentrum donghaiense, Ceratium furca, and Alexandrium fraterculus, which formed serial red tides prior to the occurrence of C. polykrikoides red tides, the HTDs Gyrodinium spp., Polykrikos spp., and Gyrodinium spp., respectively were abundant. The maximum calculated grazing coefficients attributable to dominant heterotrophic protists on co-occurring P. donghaiense, C. furca, and A. fraterculus were 13.12, 4.13, and $2.00d^{-1}$, respectively. Thus, heterotrophic protists may sometimes have considerable potential grazing impacts on populations of these four red tide species in the study area.

Short -term changes of microbial communities after control of Cochlodinium polykrikoides by yellow clay and chemical compound dosing in microcosm experiments (황토와 화학물질 살포에 의한 적조생물Cochlodinium polykrikoides 제어에 따른 미소생물그룹의 단주기변화)

  • Baek, Seung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2971-2977
    • /
    • 2015
  • This study aimed to understand the changes in microbial community after algicide dosing to control the fish-killing dinoflagellate Cochlodinium polykrikoides in 10L microcosm. Based on our microcosm experiments, the algicidal activity for C. polykrikoides of yellow clay at the concentrations of 4g and 10g per 10 L was < 20%. At $0.8{\mu}M$ concentration of thiazolidinedione(TD49), the population of C. polykrikoides was controlled to be > 85%. In microbial community, a significant increase in heterotrophic bacterial (HB) abundance was observed at day 1 in the TD49 and yellow clay treatments including control. The HB remained high for 2 days and then gradually decreased. In contrast, the abundance of heterotrophic nanoflagellates (HNFs) increased significantly on days 3 and 5 in the TD49 treatments, indicating that the decline in HB was probably a result of predation by the high density of HNFs. In addition, fluctuations in the aloricate ciliate Uronema sp., which feed on bacteria, was clearly correlated with fluctuations in HB abundance, with a lag period of 1-3 days. Therefore, the short-term responses of the HNF and Uronema sp. may have been a result of the rapidly increasing of HB abundance, which is related to degradation of the dense C. polykrikoides bloom, particularly in the TD49 treatment. In addition, large aloricate ciliate Euplotes sp. was significantly increased after reproduction of HNFs and Uronema sp. Consequently, the algicide TD49 had positive effect on the microbial communities, which indicates that the microbial loop was temporarily enhanced in the microcosm by energy flow from HB through HNFs to ciliate.

Dynamics of Inorganic Nutrients and Phytoplankton in Shihwa Reservoir (시화호에서 무기영양염과 식물플랑크톤의 동태)

  • Kim, Dong-Sup;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.2 s.90
    • /
    • pp.109-118
    • /
    • 2000
  • The dynamics of inorganic nutrients and phytoplankton population were examined at eight stations of Shihwa Reservoir, which situated near the cities newly constructed and the industrial complex of West-sea in Korea, from January to December 1999. Among environmental factors, average concentration of $NH_4$, SRP and SRSi were $522.7\;{\mu}g\;N/l$, $9.8\;{\mu}g\;N/l$ and $0.26\;{\mu}g\;Si/l$, respectively. Water quality was extremely deteriorated by a great amount of pollutants load into inner reservoir after the event of rainfall. Nutrients concentration was suddenly decreased toward the lower part. While $NO_3$ concentration did not much varied among stations, but it was relatively high in winter season. Chlorophyll-a concentration was high at the upper part of the reservoir, with average of $37.2\;{\mu}/l$, and closely related to the fluctuation of $NH_4$, SRP and SRSi concentrations. The phytoplankton development in the water column was dominated by diatom (autumn), prasinoid (winter) and dinoflagellate (summer). Dominant phytoplankton were composed to Skeletonema costatum of diatom, Prorocentrum minimum of dinoflagellate, Chroomonas spp. of cryptomonad, Eutreptiella gymnastica of euglenoid and Pyramimonas spp. of prasinoid. The large bloom of phytoplankton at the upper zone of the Shihwa Reservoir after inflow of a seawater were consistently observed. In consequence, water quality management of the inlet stream was assessed to be very important and urgent.

  • PDF