• Title/Summary/Keyword: dimethylsulfide (DMS)

Search Result 11, Processing Time 0.022 seconds

Dimethylsulfide as a Malordorous Component of a Waste Reclamation Site

  • Kim, Ki-Hyun;Lee, Gangwoong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.E
    • /
    • pp.39-43
    • /
    • 1999
  • To help idntify the potential sources of volatile organic sulfur compounds within the continental environment, we have conducted preliminary measurements of dimethylsulfide(DMS) during field campains held from three reference sites. These sampling sites were located within a waste reclamation facility in Won Ju City, Kang Won Province. The results of our measurements showed that DMS levels spanned over 1 to 55 pptv with a mean and 1 standard deviation(1SD) of 12 and 18 pptv(N=13). In a comparison of the data derived from the strongest sources, i.e., oceanic environment, the DMS levels in thre reclamation facility were jpronouncingly low with high day-to-night concentration ratios. It was noted that a significant difference in DMS levels between daytime and nighttime periods was mainly driven by a few exceptional data measured during daytime. Despite limitations of our measurement data in deriving meaningful interpretations of spatiotemporal distributions of DMS in inland facilities, the existence of extraordinary trends, i.e., especially "lower-than-expectedL" DMS values, can be explained in terms of mixed effects of several factors. Most importantly, we can infer that the rates of DMS production and of its destruction in the study site are at or near steady-state condition. Another possibility is that DMS is not adequate enough to explain the generally malordorous environment of reclamation sites, of particular in Won Ju area.n Ju area.

  • PDF

Dimethylsulfide and Dimethylsulfoniopropionate Production in the Antarctic Pelagic Food Web

  • Kasamatsu, Nobue;Odate, Tsuneo;Fukuchi, Mitsuo
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.197-203
    • /
    • 2005
  • Dimethylsulfide (DMS) is the most abundant form of volatile sulfurs in the ocean. Many biogeochemical studies have been conducted in the past several decades to unveil the processes driving the production, transformation and removal of DMS. They have shown that the Southern Ocean is an area with one of the highest levels of DMS concentrations during the austral summer in the global oceans. It has recently been observed that Antarctic krill, Euphausia superba, produces DMS and dissolved dimethyl-sulfoniopropionate (DMSP) in its gazing process. Copepods also produce DMS, and the potential production rates of DMS in the Southern Ocean by krill and copepods are estimated to be as much as $21{\mu}mol\;m^{-2}d^{-1}$ and $0.6{\mu}mol\;m^{-2}d^{-1}$, respectively. These production rates of zooplankton and the presence of phytoplanktot which have high DMSP contents in their cells, might facilitate in situ DMS production in the Southern Ocean.

Dimethylsulfide (DMS) in the Coastal Areas of the Cheju Island, Korea (제주도 연안해역을 중심으로 한 DMS 농도의 관측)

  • 김기현;이강웅;허철구;강창희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.2
    • /
    • pp.161-170
    • /
    • 1997
  • The concentrations of dimethylsulfide (DMS) were determined using samples collected from a station located at Kosan, Cheju Island during two field campaigns held in December 1996 and January 1997. The atmospheric DMS concentrations measured at 6-hr intervals during the entire campaign periods, after excluding a few extreme values, spanned in the range of 14 to 410 pptv with mean and 1 SD value of 127 $\pm$ 94 pptv (N=42). Between two month periods during which the field campaigns were conducted, a notable reduction in DMS levels was observed which was comparable to the dramatic shift in air temperature. A considerable difference was also noted in DMS levels, when data were grouped by day/night basis. The cause of unexpected, high day-to-night DMS ratios is best explained in terms of high efficiency of daytime source processes relative to low efficiency of nighttime sink processes due to the characteristics of the study location. The surface water DMS of the study site, although scarcely measured, also behaved similarly to its atmospheric counterpart with its range from 0.3 to 19 nM (N=11). When correlation analysis was conducted between the atmospheric DMS concentration and other concurrently determined parameters, significant correlations were observed from most basic meteorological parameters such as windspeed, relative humidy, and air temperature. However, the existence of "not-so-strong" correlations between air temperature and DMS concentrations relative to other ones indicated that the effect of temperature on DMS behavior must be reflected in more complicated manners at the study site. The sea-to-air flux of DMS was approximated through an application of the mass-balance flux calculation method of Wylie and de Mora (1996) under the assumption that sink mechanism within the marine boundary layer is in steady-state condition with its counterpart, source mechanism. Based on this estimation method, we reached a conclusion that oceanic DMS emitted from the southwest sea of the Korean Peninsula can amount to approximately 9 $\sim$ 36 Gg S $yr^{-1}$.$yr^{-1}$.

  • PDF

Dimethylsulfide (DMS) in Seawater and the Overlying Atmosphere of the Masan Bay (해수 및 대기 중 DMS의 분석 : 마산만을 중심으로)

  • 김기현;오재룡;강성현;이수형;이강웅
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.495-504
    • /
    • 1996
  • The concentrations of dimethylsulfide (DMS) were determined from both seawater and the overlying atmosphere from a station located in the Masan Bay area during a ten-day field campaign period of January 1996. The resulting data were also used to derive saturation ratios (SR) as well as sea-to-air fluxes of DMS. The concentrations and fluxes of DMS for both reservoirs varied extensively over two to three orders of magnitude: DMS in air and seawater were measured at 9 to 4,300 pptv (mean: 600 $\pm$ 1, 170, N=18) and at 0.24 to 10 nM (4.0 $\pm$ 3.4, N=13), respectively, while its fluxes were found from 0.02 to 23 mol $m^{-2} day^{-1} (3.1 \pm 6.8, N=11)$. A comparative analysis between our data and previously reported ones indicate that its atmospheric concentrations are abnormalously high, but its seawater counterparts are slightly lower than expected. In light of high pollution levels of organic-rich materials in and the associated high biological productivity of the study area, the sea-to-air-fluxes derived are notably low relative to those values typically reported from the coastal areas. These complicated features of DMS distributions/fluxes in the study site indicate that the near-by port- based anthropogenic activities from various industrial plants strongly interfere with natural processes leading to the production and release of DMS. It was however striking to find out relatively strong signals of diel cycle in its saturation ratios, concentration gradients between seawater and atmosphere, and the associated fluxes. Although it is yet difficult to provide meaningful explanations for the observed phenomena, the existence of clear diel cycle in some DMS-related parameters suggests that the natural processes may nonetheless exert important controls on the regional cycling of atmospheric sulfur species, of particular DMS.

  • PDF

Development of an Analytical Approach to Measure Volatile Sulfur Compounds Using a Non-Cryogenic Preconcentration Method (비냉각형 선농축 방식에 의한 대기 중 휘발성 황화합물의 분석방법 개발)

  • 김기현;이강웅
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.5
    • /
    • pp.355-360
    • /
    • 1997
  • The atmospheric concentration of dimethylsulfide (DMS), known as the predominant volatile organic. sulfur compound, is determined at subnanogram level by a combined application of non-cryogenic preconcentration method and gas chromatography with flame photometric detection (GC/FPD). The volatile DMS in air is preconcentrated using a trapping tube containing adsorbent like Molecular Sieve 5A (or gold-coated sands). The tube is then connected to the GC/FPD system via a six-way rotary valve, thermally desorbed at 40$0^{\circ}C$, separated on OV101 column, and detected by a flame photometric detector. The DMS peak elutes at about 2.5 mins and is integrated electronically. The analytical precision, if expressed in terms of relative standard error, is around 5%. The detection limit of our GC/FPD system is ca 1 ng of DMS. Details of our analytical system are presented.

  • PDF

Emissions of Sulfur Compounds and The Significance of Their Cycling in the Western Korea Sea (서해지역을 중심으로 한 자연적 황화합물의 배출과 순환에 대한 연구)

  • 김기현;이강웅
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.77-86
    • /
    • 1998
  • The concentrations of atmospheric dimethylsulfide (DMS) and the relevant environmental parameters were measured as part of the 3rd year project (August 1997-July 1998) to investigate the long range transport of atmospheric pollutants (LRTAP) between China and Korea. The main purpose of this study was to derive the contribution of natural sulfur emissions (represented by oceanic DMS fluxes) in estimating the total budgets of sulfur transported across the Yellow Sea. To this end, DMS concentrations were determined from the two western coastal monitoring sites (Cheju and Kang Hwa islands) during three field intensive experiments covering fall, winter, and spring seasons. From these series of experiments, we found that DMS concentrations of Cheju and Kang Iffwa were averaged at 74 $\pm$ 49.5 (range: 19~282 pptv (N=81)) and 63.7 $\pm$ 35.1 (range:25.8~131 pptv (N=19)), respectively. By combining these 3rd year data with those measured previously from the 2nd year, we were able to derive some general pictures of seasonal distribution patterns of DMS. Although DMS data were difficult to derive relationships with other parameters determined simultaneously, they were rarely exhibiting good correlations with temperature or wind speed. The oceanic flux of DMS for the western coastal regions of Korea, when estimated based on our data from two islands, was found on the range of 8.8~12.2 GgS/yr. By considering the relationship between DMS and non-seasalt sulfate, we could also provide rough estimate of relative significance of natural emissions of sulfur. If oceanic DMS emitted from those regions is entirely converted to sulfate, it could represent 10 to 25% of total sulfur budgets in the western Sea of Korea.

  • PDF

Distribution of DMS Concenturation in the Atmosphere over Yellow Sea - Preliminary Measurements 1mm Duk-Juk Island (한국 황해지역의 DMS 분포특성에 대한 연구 - 덕적도를 중심으로)

  • Kim, Ki-Hyun;Kim, Ji-Young;Song, Ki-Bum;Kim, Na-Young;Lee, Gang-Woong;Bae, Gwi-Nam
    • Journal of the Korean earth science society
    • /
    • v.21 no.1
    • /
    • pp.51-58
    • /
    • 2000
  • This study was performed to accumulate database for natural sulfur emissions in the Yellow Sea region of Korea. The atmospheric concentrations of dimethylsulfide(DMS) were measured during two intensive field experiments (April and September 1999) from Duk-Juk Island located in the Yellow Sea. Ship-measurement of DMS was made additionally between Chungdo(China) and Inchun(Korea) across the Yellow Sea during June 1999. The mean(and ISD) of DMS concentrations in Duk-Juk Island during two field campaigns was $24.0{\pm}40.5$(n=40, April) and $61.1{\pm}37.9$ pptv(n=35, September), respectively. The atmospheric DMS measured from ship experiments was generally low and close to the background concentrations in the open sea area. The temporal distributions of DMS concentration were complicated in some sense but comparable to those of ambient meteorological parameters. On the basis of our measurements of atmospheric DMS(and evidence found from previous studies), the sea-to-air flux of DMS in the Yellow Sea is estimated to be about 4Gg S/yr. This amount of natural S emissions is relatively lower than the estimates derived for Cheju Island. Therefore, additional experiments may be desperate to derive more reliable figures for natural sulfur emissions in the Yellow Sea region.

  • PDF

Overall Conversion Efficiency for Dimethylsulfide to Sulfur Dioxide in the Marine Boundary Layer-An Overview

  • Shon, Zang-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E2
    • /
    • pp.107-120
    • /
    • 2002
  • Dimethyl sulfide (DMS) is the major sulfur gas released from the ocean. The atmospheric DMS released from the ocean is oxidized mainly by hydroxyl (OH) radical during the day and nitrate (NO$_3$) radical at night to form sulfur dioxide (SO$_2$) as well as other stable products. The oxidation mechanism of DMS via OH has been known to proceed by two channels; abstraction and addition channels. The major intermediate product of the addition channel has been known to be dimethylsulfoxide (DMSO) based on laboratory chamber studies and field experiments. However, a branching ratio for DMSO formation is still uncertain. The reaction of DMSO with OH ultimately produces SO$_2$and dimethylsulfone. The major product of the abstraction channel has known to be SO$_2$from laboratory chamber studies. But overall conversion efficiency for DMS to SO$_2$from DMS oxidation is still inconsistent in the literature. Based on laboratory and field studies, the conversion efficiency from the abstraction channel is likely to be greater than 0.5, while that from the addition channel is likely to be greater than 0.6. Overall conversion efficiency from DMS to SO$_2$might be greater than 0.5 based on the above two values in the remote marine boundary layer (MBL). This high efficiency in the remote MBL is supported by strong coupling between DMS and SO$_2$measurements with high temporal resolution.

Analysis of Atmospheric Sulfur Compounds in Cheju (제주지역을 중심으로 한 대기 중 황화합물의 관측)

  • Hilton, Swan;Yang, Gyu-Seung;Kim, Ji-Young;Shon, Zang-Ho;Lee, Gang-woong;Kang, Chang-Hee;Kim, Ki-Hyun
    • Journal of the Korean earth science society
    • /
    • v.23 no.5
    • /
    • pp.416-423
    • /
    • 2002
  • The concentrations of dimethylsulfide (DMS) and carbon disulfide (CS$_2$) were measured concurrently with relevant environmental parameters at Kosan, Cheju during Apr 2001. Results of our analysis indicate that the combined temporal variations of both DMS and CS$_2$ record three distinctible patterns that are separable from each other. For instance, DMS behaved very similarly to CS$_2$ during the 1st (5${\sim}$18 Apr) and 3rd period (23${\sim}$26 Apr). The pronouncingly high concentration of CS$_2$ was maintained during the first period, but DMS values peaked mostly during the third period. It was furthermore striking to find that changes in DMS levels occurred in an opposite direction relative to CS$_2$ during the 2nd period. Although most of these variabilities appear to be associated with the interaction of source/sink processes and the air parcel movement, certain aspects of their behavior are found to be highly complicated enough to account for.

A Study of Relative Performance of SPME Method for the Analysis of VOC and Some Major Odorous Compounds (SPME에 기초한 VOC 및 주요 악취물질들의 상대적 검량특성에 대한 연구)

  • Im, Moon-Soon;Song, Hee-Nam;Kim, Ki-Hyun;Sa, Jae-Hwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.39-49
    • /
    • 2007
  • In this study, the performance characteristics of solid phase microextraction (SPME) were investigated for three major odorous groups that consist of 10 individual compounds ([1] volatile organic compounds (VOC): benzene, toluene, p-xylene and styrene, [2] reduced sulfur compounds (RSC): hydrogen sulfide, methyl mercaptan, dimethylsulfide (DMS), dimethyldisulfide (DMDS), and carbon disulfide, and [3] amine: trimethylamine (TMA)). For the purpose of a comparative analysis, two types of SPME fiber ([1] polidimethylsiloxane/divinilbenzene (P/D) and [2] $Carboxen^{TM}$/polidimethylsiloxane (C/P)) were test ε d against each other for a series of standards prepared at different concentration levels (100, 200, and 500 ppb). To compare the analytical performance of each fiber, all standards were analyzed for the acquisition of calibration data sets for each compound. The results of P/D fiber generally showed that its calibration slope increased as a function of molecular weight across different VOCs; however, those of C/P fiber showed a fairly reversed trend. Besides, we confirmed that the application of SPME is limited to many sulfur compounds; only two compounds (DMS and DMDS) are sensitive enough to draw calibration results out of SPME. The calibration data for RSC show generally enhanced slop values for C/P relative to P/D fiber. However, in the case of TMA, we were not able to find a notable difference in their performance.