• Title/Summary/Keyword: dimensioning method

Search Result 38, Processing Time 0.023 seconds

Hardware implementation and error analysis of an algorithm for compensating the secondary current of iron-cored current transformers (철심 변류기의 2차 전류 보상 알고리즘의 실시간 구현 및 오차 분석)

  • 강용철;김성수;박종근;강상희;김광호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.490-500
    • /
    • 1996
  • The conventional method to deal with current transformer (CT) Saturation is over dimensioning of the core so that CTs can carry up to 20 times the rated current without exceeding 10% ratio correction. However, this not only reduces the sensitivity of relays as some errors may still be present in the secondary current when a severe fault occurs, but also increases the CT size. This paper presents an algorithm for compensating the distorted secondary current of iron-cored CTs under CT saturation using the magnetization (flux-current : .lambda.-i) curve and its performance is examined for fault currents encountered on a typical 345[kV] Korean transmission system, under a variety of different system and fault conditions. In addition, the results of hardware implementation of the algorithm using a TMS320C10 digital signal processor are also presented. The proposed algorithm can improve the sensitivity of relays to low level internal faults, maximize the stability of relays for external faults, and reduce the required CT core cross-section significantly. (author). refs., figs.

  • PDF

A Design Method of Iron-cored CTs To Prevent Satruation (포화를 방지하기 위한 보호용 철심 변류기 설계 방법)

  • Lee, Ju-Hun;Gang, Sang-Hui;Gang, Yong-Cheol;Lee, Seung-Jae;Bae, Ju-Cheon;An, Jun-Gi;Lee, Cheong-Hak;Lee, Jeong-Taek
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.119-126
    • /
    • 1999
  • Current transformer (CT) saturation may cause a variety of protective relays to malfunction. The conventional CT is designed that it can carry up to 20 times the rated current without exceeding 10% ratio error. However, the possibility of CT saturation still remains if the fault current contains substantial amounts of ac and/or dc components. This paper presents a design method of iron-cored CTs for use with protective relays to prevent CT saturation. The proposed design method determines the core cross section of the CT; it employs the transient dimensioning factor to consider relay's operating time (duty cycle) and dc component as well as ac components contained in the fault current, and symmetrical short-circuit current factor to consider as well as ac components contained in the fault current, and symmetrical short-circuit current factor to consider the biggest fault current. The method designs the cross section of CTs in cases of reclosure and no reclosure.

  • PDF

Tunnel Convergence and Crown Settlement Using 3D Laser Scanning (3 차원 레이저 스캐닝을 이용한 터널의 천단 및 내공 변위 관측)

  • Lee, Jae-One;Yun, Bu-Yeol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.2 s.40
    • /
    • pp.67-75
    • /
    • 2007
  • There are a number of risks in constructing tunnel-structures. Therefore, the precise and rapid observation about inside deformation of the tunnel is required to prevent these risks from occurring and to secure safety. But currently, the real situation is that the crown settlement, cavity deformation and ground surface settlement rely upon the universal mensuration which uses total station or various kinds of measuring instruments. Recently, according to improvement and progress of measuring technology, three-dimensional laser scanning is used as the method to provide data for maintaining structures. It solves the reliability problem of measuring method for the transformational volume of existing structures, provides data that enables to judge visually by three-dimensioning the shape change of structures and makes it possible to deliberate speedy countermeasure. And it can also be efficiently used in the structure maintenance and field measurement.

  • PDF

Development of Combined Sheet Metal Forming and Plate Forging of a Metal Seal Part of Hub Bearing for an Automobile (자동차 허브 베어링용 씰 금속부품의 판재성형 및 판단조의 복합성형 공정 개발)

  • Park, K.G.;Moon, H.K.;Oh, S.K.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.4
    • /
    • pp.194-202
    • /
    • 2020
  • In this paper, experimental and numerical study on a combined sheet metal forming and plate forging of a seal part of a passenger car's hub bearing is conducted to develop the new process of which target is to remove machining process by plate forging and to achieve near-net shape manufacturing. The previous process of a sheet metal forming inevitably needed a machining process for making stepped sheet after conventional sheet metal forming in a progressive way. The stepped sheet is intended to be formed by plate forging in this study. Through the systematic way of developing the combined forming process using solid elements based-elastoplastic finite element method (FEM), several conceptual designs are made and an optimized process design in terms of geometric dimensioning and tolerance of straightness of the thin part is found, which is exposed to bending in metal forming of axisymmetric part. The predicted straightness measured by the slope angle of the tilted thin region is compared with the experimental straightness, showing that they are in a good agreement with each other. Through this study, a systematic approach to optimal process design, based on elastoplastic FEM with solid elements, is established, which will contribute to innovating the conventional small-scaled sheet metal forming processes which can be dealt with by solid elements.

Slope stabilization with high-performance steel wire meshes in combination with nails and anchors

  • Rudolf Ruegger;Daniel Flum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.3-38
    • /
    • 2000
  • Slope draperies in soil and rock are a well known method to avoid rockfalls into the roads or onto housings. Common wire mesh or a combination of wire mesh and wire rope nets are pinned to the slope by the means of fully grouted nails or anchors. Most of these installations have not been designed to stabilize the slope, but simply avoid the rocks from bouncing. The combination of soil- or rocknailing with a designable flexible facing system offers the advantage of a longterm stabilization of slopes and can replace other standard methods for slope stabilization. The capability to transfer axial and shear loads from the flexible facing system to the anchor points is most decisive for the design of the stabilization system. But the transfer of forces by mesh as pure surface protection devices is limited on account of their tensile strength and above all also by the possible force transmission to the anchoring points. Strong wire rope nets increase the performance for slope stabilizations with greater distances between nails and anchors and are widely used in Europe. However, they are comparatively expensive in relation to the protected surface. Today, special processes enable the production of diagonally structured mesh from high-tensile steel wire. These mesh provide tensile strengths comparable to wire rope nets. The interaction of mesh and fastening to nail / anchor has been investigated in comprehensive laboratory tests. This also in an effort to find a suitable fastening plates which allows an optimal utilization of the strength of the mesh in tangential (slope-parallel) as well as in vertical direction (perpendicular to the slope). The trials also confirmed that these new mesh, in combination with suitable plates, enable substantial pretensioning of the system. Such pretensioning increases the efficiency of the protection system. This restricts deformations in the surface section of critical slopes which might otherwise cause slides and movements as a result of dilatation. Suitable dimensioning models permit to correctly dimension such systems. The new mesh with the adapted fastening elements have already been installed in first pilot projects in Switzerland and Germany and provide useful information on handling and effects.

  • PDF

Semi Variance Measurement on Tunnel using 3D Laser Scanning (3차원 레이저 측량기를 이용한 터널 변위 관측)

  • Lee, Jae-One;Kim, Yong-Suk;Song, Youn-Kyung
    • Journal of the Korean Geophysical Society
    • /
    • v.10 no.1
    • /
    • pp.27-35
    • /
    • 2007
  • There are many risks in constructing tunnel-structure. To prevent these risks from occurring and secure safety, the precise and rapid survey of inside displacement of the tunnel is required. But nowadays the measurement of the crown settlement, convergency, and surface settlement depends on general kinds of method which use total station or level. In the way to provide data about maintaining structure according to recent improvement and progress of measuring technology, 3D laser scanning is used. It solves the problem of reliability in measuring displacement of existing structure, provides material that enables to estimate shape change of structure visually, and makes it possible to deliberate speedy countermeasure. By this three dimensioning it is possible to make efficient use of structure maintenance and field measurement.

  • PDF

Suggestions of Define Methods by Rigid/Non-Rigid Parts' Definitions (강체와 비강체 부품의 정의와 지정방법에 대한 제안)

  • Kim, Jae-Moon;Chang, Sung-Ho;Lee, Wang-Bum
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.115-119
    • /
    • 2018
  • Defining and measuring non-rigid or flexible parts has been controversial in industry for many years. There are two primary areas of controversy. The first is agreeing on what exactly a non-rigid part is. The second is agreeing on how to define and measure a non-rigid part. The subject of non-rigid parts is further complicated by the brief coverage it receives in the national and international standards. This leaves each company to improvise or create its own rules for non-rigid parts. There are some who believe that Geometrical Dimensioning and Tolerancing (GD&T) should not be used on non-rigid parts. This is not true. The ASME Y14.5M standard applies to rigid parts as a default condition. However, there is no definition given for a rigid part. The term rigid part has been used in industry for so long that it has gained a definition by its general use. When most people in industry say rigid part, they are referring to a part doesn't move (deform or flex) when a force (including gravity) is applied. How much force is relative based on the part characteristics. In reality, all parts will deform (or flex) if enough force is applied. Using this logic, all parts would be considered non-rigid. However, we all know that this is not how parts are treated in industry. Although GD&T defaults to rigid parts, it should also be used on non-rigid parts with a few special techniques. Actually 50~60% of all products designed contain parts or features on parts that are non-rigid. Therefore, we try to suggest the definitions of rigid and non-rigid parts and method to measure non-rigid parts.

Memory Organization for a Fuzzy Controller.

  • Jee, K.D.S.;Poluzzi, R.;Russo, B.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1041-1043
    • /
    • 1993
  • Fuzzy logic based Control Theory has gained much interest in the industrial world, thanks to its ability to formalize and solve in a very natural way many problems that are very difficult to quantify at an analytical level. This paper shows a solution for treating membership function inside hardware circuits. The proposed hardware structure optimizes the memoried size by using particular form of the vectorial representation. The process of memorizing fuzzy sets, i.e. their membership function, has always been one of the more problematic issues for the hardware implementation, due to the quite large memory space that is needed. To simplify such an implementation, it is commonly [1,2,8,9,10,11] used to limit the membership functions either to those having triangular or trapezoidal shape, or pre-definite shape. These kinds of functions are able to cover a large spectrum of applications with a limited usage of memory, since they can be memorized by specifying very few parameters ( ight, base, critical points, etc.). This however results in a loss of computational power due to computation on the medium points. A solution to this problem is obtained by discretizing the universe of discourse U, i.e. by fixing a finite number of points and memorizing the value of the membership functions on such points [3,10,14,15]. Such a solution provides a satisfying computational speed, a very high precision of definitions and gives the users the opportunity to choose membership functions of any shape. However, a significant memory waste can as well be registered. It is indeed possible that for each of the given fuzzy sets many elements of the universe of discourse have a membership value equal to zero. It has also been noticed that almost in all cases common points among fuzzy sets, i.e. points with non null membership values are very few. More specifically, in many applications, for each element u of U, there exists at most three fuzzy sets for which the membership value is ot null [3,5,6,7,12,13]. Our proposal is based on such hypotheses. Moreover, we use a technique that even though it does not restrict the shapes of membership functions, it reduces strongly the computational time for the membership values and optimizes the function memorization. In figure 1 it is represented a term set whose characteristics are common for fuzzy controllers and to which we will refer in the following. The above term set has a universe of discourse with 128 elements (so to have a good resolution), 8 fuzzy sets that describe the term set, 32 levels of discretization for the membership values. Clearly, the number of bits necessary for the given specifications are 5 for 32 truth levels, 3 for 8 membership functions and 7 for 128 levels of resolution. The memory depth is given by the dimension of the universe of the discourse (128 in our case) and it will be represented by the memory rows. The length of a world of memory is defined by: Length = nem (dm(m)+dm(fm) Where: fm is the maximum number of non null values in every element of the universe of the discourse, dm(m) is the dimension of the values of the membership function m, dm(fm) is the dimension of the word to represent the index of the highest membership function. In our case then Length=24. The memory dimension is therefore 128*24 bits. If we had chosen to memorize all values of the membership functions we would have needed to memorize on each memory row the membership value of each element. Fuzzy sets word dimension is 8*5 bits. Therefore, the dimension of the memory would have been 128*40 bits. Coherently with our hypothesis, in fig. 1 each element of universe of the discourse has a non null membership value on at most three fuzzy sets. Focusing on the elements 32,64,96 of the universe of discourse, they will be memorized as follows: The computation of the rule weights is done by comparing those bits that represent the index of the membership function, with the word of the program memor . The output bus of the Program Memory (μCOD), is given as input a comparator (Combinatory Net). If the index is equal to the bus value then one of the non null weight derives from the rule and it is produced as output, otherwise the output is zero (fig. 2). It is clear, that the memory dimension of the antecedent is in this way reduced since only non null values are memorized. Moreover, the time performance of the system is equivalent to the performance of a system using vectorial memorization of all weights. The dimensioning of the word is influenced by some parameters of the input variable. The most important parameter is the maximum number membership functions (nfm) having a non null value in each element of the universe of discourse. From our study in the field of fuzzy system, we see that typically nfm 3 and there are at most 16 membership function. At any rate, such a value can be increased up to the physical dimensional limit of the antecedent memory. A less important role n the optimization process of the word dimension is played by the number of membership functions defined for each linguistic term. The table below shows the request word dimension as a function of such parameters and compares our proposed method with the method of vectorial memorization[10]. Summing up, the characteristics of our method are: Users are not restricted to membership functions with specific shapes. The number of the fuzzy sets and the resolution of the vertical axis have a very small influence in increasing memory space. Weight computations are done by combinatorial network and therefore the time performance of the system is equivalent to the one of the vectorial method. The number of non null membership values on any element of the universe of discourse is limited. Such a constraint is usually non very restrictive since many controllers obtain a good precision with only three non null weights. The method here briefly described has been adopted by our group in the design of an optimized version of the coprocessor described in [10].

  • PDF