• Title/Summary/Keyword: dimensional shrinkage

Search Result 227, Processing Time 0.026 seconds

Fabrication of Low-Shrinkage Reaction-Bonded Alumina Ceramics (저수축 반응소결 알루미나 세라믹스의 제조)

  • 박정현;이현권;정경원;염강섭
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.6
    • /
    • pp.419-430
    • /
    • 1992
  • Fabrication possibility of low-shrinkage alumina without oxidation and wetting agent was presented on the basis of observation about oxidation behavior, microstructure and physical characteristics of such reaction agents free Al2O3-Al system. The composition less than Al 10w/o where Al can act as a sintering agent for Al2O3 was excluded. Under the condition of present experiments oxidation of Al2O3-Al system was dependent not on holding time but mainly on oxidation temperature. In thes case of Al powder not comminuted effectively during powder mixing of Al2O3-Al, columnar structure which would act as a hindrance to the densification during sintering developed more during oxidation with higher Al contents, and which made the fabrication of low-shrinkage Al2O3 ceramics impossible. If Al powder was comminuted effectively due to co-mixed Al2O3 characteristics, densification was improved because of no columnar structure and made the fabrication of sintered body with -2.7% dimensional change and 81% relative density possible. As a result, it is possible to fabricate dense low-shrinkage Al2O3 ceramics without oxidation and wetting agent under conditions such as smaller particle size of Al, Al contents below 50v/o, higher green density of Al2O3-Al compact and the use of Al2O3 powder used for high-density ceramics.

  • PDF

The effect of injection molding cooling parameters on shrinkage of plastic roller (사출성형의 냉각 파라미터가 플라스틱 롤러의 수축에 미치는 영향)

  • Cho, Sung-Gi;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.8-13
    • /
    • 2021
  • A plastic roller for opening and closing the safety door of the injection molding machine was molded. The dimensional change of the measurement position of the roller was studied when the cooling time was applied differently among the molding conditions, and when the temperature of the coolant applied for mold cooling was also applied differently. Cooling times of 300 seconds and 400 seconds, hot and low-temperature coolant were applied. When the low-temperature coolant was applied, the measuring point of the roller shrank by 0.03 mm. However, when the high-temperature coolant was applied, the measuring point shrank by 0.3 mm. It was found that the application of low-temperature coolant among coolants was more suitable for the reference dimension of the molded article compared to the application of high-temperature coolant. Among the cooling water applied for the molding of plastic rollers, when high-temperature coolant is applied, the shrinkage rate measured immediately after ejection was smaller than when low-temperature coolant is applied. However, it was found that post shrinkage, which occurs over time, occurs much larger when high-temperature coolant is applied.

Ultrasonic Cleaning이 Resin 의치상의 안정에 미치는 영향에 관한 실험적 연구

  • Lee, Han-Moo
    • The Journal of the Korean dental association
    • /
    • v.12 no.1
    • /
    • pp.37-42
    • /
    • 1974
  • To ascertain if the ultrasonic cleaning technique caused any dimensional changes in heat and cold curing and fluid resin denture bases and in addition to evaluate the dimensional changes of the resin denture bases stored in water and air, the author measured the distance between the outsides of two pins embedded in methyl methacrylate test denture bases by mean of 12 inch vernier caliper, accurate to 0.02mm. The results were as follows; (1) Ultrasonic cleaning didn't cause any permanent dimensional changes, but only affected temporary dimensional expansion in 16 test denture bases. (2) Temporary expansion rate caused by 10 minutes' ultrasonic cleaning was 0.29% and at the maximal temperature of the cleaning solution it was 0.64%. (3) The half of the denture bases stored in water showed the dimensional expansion rate of 0.47% while the others stored in air showed the dimensional shrinkage rate of 0.15% after 4 months.

  • PDF

A study of birefringence, residual stress and final shrinkage for precision injection molded parts

  • Yang, Sang-Sik;Kwon, Tai-Hun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.191-199
    • /
    • 2007
  • Precision injection molding process is of great importance since precision optical products such as CD, DVD and various lens are manufactured by those process. In such products, birefringence affects the optical performance while residual stress that determines the geometric precision level. Therefore, it is needed to study residual stress and birefringence that affect deformation and optical quality, respectively in precision optical product. In the present study, we tried to predict residual stress, final shrinkage and birefringence in injection molded parts in a systematic way, and compared numerical results with the corresponding experimental data. Residual stress and birefringence can be divided into two parts, namely flow induced and thermally induced portions. Flow induced birefringence is dominant during the flow, whereas thermally induced stress is much higher than flow induced one when amorphous polymer undergoes rapid cooling across the glass transition region. A numerical system that is able to predict birefringence, residual stress and final shrinkage in injection molding process has been developed using hybrid finite element-difference method for a general three dimensional thin part geometry. The present modeling attempts to integrate the analysis of the entire process consistently by assuming polymeric materials as nonlinear viscoelastic fluids above a no-flow temperature and as linear viscoelastic solids below the no-flow temperature, while calculating residual stress, shrinkage and birefringence accordingly. Thus, for flow induced ones, the Leonov model and stress-optical law are adopted, while the linear viscoelastic model, photoviscoelastic model and free volume theory taking into account the density relaxation phenomena are employed to predict thermally induced ones. Special cares are taken of the modeling of the lateral boundary condition which can consider product geometry, histories of pressure and residual stress. Deformations at and after ejection have been considered using thin shell viscoelastic finite element method. There were good correspondences between numerical results and experimental data if final shrinkage, residual stress and birefringence were compared.

Fabrication of Ceramic Line Pattern by UV-Nanoimprint Lithography of Inorganic Polymers (무기고분자의 나노임프린트법에 의한 세라믹 선형 패턴의 제조)

  • Park Jun-Hong;Pham Tuan-Anh;Lee Jae-Jong;Kim Dong-Pyo
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.407-411
    • /
    • 2006
  • The SiC-based ceramic nanopatterns were prepared by placing polydimethylsiloxane (PDMS) mold from DVD master on the spincoated polyvinylsilaeane (PVS) or allylhydridopolycaybosilane (AHPCS) as ceramic precursors to fabricate line pattern via UV-nanoimprint lithography (UV-NIL), and subsequent pyrolysis at $800^{\circ}C$ in nitrogen atmosphere. As the dimensional change of polymeric and ceramic patterns was comparatively investigated by AFM and SEM, the shrinkage in height was 38.5% for PVS derived pattern and 24.1% for AHPCS derived pattern while the shrinkage in width was 18.8% for PVS and 16.7% for AHPCS. It indicates that higher ceramic yield of the ceramic precursor resulted in less shrinkage, and the strong adhesion between the substrate and the pattern caused anisotropic shrinkage. This preliminary work suggests that NIL is a promissing route for fabricating ceramic MEMS devices, with the development on the shrinkage control.

The Study on the Dimensional Computer Simulation of Solidification behavior by FDM in Al-Bronze Casting (Al-bronze에 있어서 직접차분법에 의한 2차원 응고해석에 관한 연구)

  • Choe, Jeong-Gil;Jeong, Un-Jae;Kim, Dong-Ok
    • 한국기계연구소 소보
    • /
    • s.17
    • /
    • pp.111-123
    • /
    • 1987
  • Two dimensional computer simulation of solidification behavior using FDM as simulation tool was applied to AI-bronze casting. By the comparison of computer simulation with the experimental results, it was showed that the final shrinkage position and solidification time are good accordance with results of computer simulation. It is expected that this software will be widely applied to casting design or rise ring for directional solidification.

  • PDF

A Study on Dimensional Properties of Warp Knitted Fabrics with Various Lengths of Underlap (Underlap 길이에 따른 경편포의 칫수특성에 관한 연구)

  • 남은우;김석근;최재우
    • Textile Coloration and Finishing
    • /
    • v.11 no.6
    • /
    • pp.51-58
    • /
    • 1999
  • The dimensional properties on polyester warp knitted fabrics with various lengths of underlap were studied. The results indicated that loop density increased with decreasing loop length and loop density of satin warp knitted fabric are a little higher than that of reverse satin warp knitted fabrics at a constant loop length. As the distance of underlap becomes shorter, the weight per unit area and thickness increases, the bulkiness decreases and the shrinkage of knitted fabrics become larger toward wale in satin warp knitted fabric and toward the course in reverse satin warp knitted fabric.

  • PDF

Fabrication of Fibrous A12O3-(m-ZrO2)/t-ZrO2 Composites Having 2, 3-Dimensional Array (2,3차원배열을 갖는 섬유상 A12O3-(m-ZrO2)/t-ZrO2 복합재료의 제조)

  • Kim Ki-Hyun;Lee Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.15 no.9
    • /
    • pp.608-612
    • /
    • 2005
  • Microstructure and mechanical properties of fibrous $A1_2O_3-(m-ZrO_2)/t-ZrO_2$ composite were investigated depending on the dimensional array. By the change of stacking arrangement of fibrous filaments, 2 and 3-dimensional fibrous composites were successfully obtained without bulk defects such as shrinkage cavity and cracks. The maximum mechanical properties were achieved In the 3-dimensional array composite, due to the fine fibrous and dense microstructure control, in which the values of vickers hardness, fracture toughness and bending strength were about 1507 Hv, $7.2MPa{\cdot}m^{1/2}$ and 650 MPa, respectively.

A Study on the Dimensional Stabilization of Domestic Small-Diameter Logs by Polyethylene Glycol Treatment - Comparison of Ring-Porous Wood and Diffuse-Porous Wood - (Polyethylene glycol(PEG)처리에 의한 국내산 소경재의 치수안정화에 관한 연구II - 환경재와 산공재의 비교 -)

  • Kwon, Goo-Joong;Kwon, Sung-Min;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.8-15
    • /
    • 2003
  • This study was carried out to investigate the dimensional stability of wood treated with PEG for better utilization of domestic small-diameter logs. Four species of ring- porous wood(Quercus mongolica FISCH, Quercus variabilis BLUME, Fraxinus rhynchophylla HANCE, Paulownia coreana UYEKI,) and four species of diffuse-porous wood(Prunus sargentii REHDER, Betula davurica PALL, Populus tomentiglandulosa T. LEE, Cornus controversa HEMSLEY) were used for this experiment. The shrinkage of wood decreased with increasing the concentration of PEG. The shrinkage of diffuse- porous woods was lower than that of ring-porous woods. The weight gain increased in proportional to the PEG concentration. Diffuse-porous woods showed a little higher weight gain than ring-porous woods. Bulking effect also increased with increasing the PEG concentration, but was in inverse proportional to the molecular weight of PEG. Diffuse-porous woods showed higher bulking effect than ring-porous woods. Consequently, diffuse-porous woods showed better dimensional stability than ring- porous woods. It was considered that dimensional stability was affected by characteristics of wood such as vessel and tylosis, and density.

Effect of Chain Orientation on the Optical Properties and Dimensional Stability of Polyethersulfone Film (주사슬 배향이 폴리에테르설폰 필름의 광학 특성 및 치수안정성에 미치는 영향)

  • Kim, Jae-Hyun;Kim, In-Sun;Kim, Yang-Kook;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.220-225
    • /
    • 2010
  • The optical properties and dimensional stability of polyethersulfone(PES) retardation film have been studied as function of chain orientation and the temperature applied to PES retardation film. It was confirmed that the appropriate retardation values of $R_e$ and $R_{th}$ for the retardation film application were able to obtain by the chain orientation and these values could be controlled by the chain relaxation through the thermal annealing process. It was found that unstable $R_e$ and $R_{th}$ values were shown by the repeated cooling and heating applied to the retardation films but this could be stabilized by means of the annealing process after stretching of PES film. The dimensional shrinkage due to the chain orientation was found as temperature increase and the intrinsic thermal expansion of PES appeared after shrinking. The shrinkage of PES films affected by the chain orientation and thermal annealing dramatically but the effect on the coefficient of thermal expansion was found to be negligible.