• Title/Summary/Keyword: dilute-and-shoot LC-MS/MS

Search Result 4, Processing Time 0.019 seconds

A Dilute-and-Shoot LC-MS/MS Method for Screening of 43 Cardiovascular Drugs in Human Urine

  • Pham, Thuy-Vy;Lee, Gunhee;Mai, Xuan-Lan;Le, Thi-Anh-Tuyet;Nguyen, Thi Ngoc Van;Hong, Jongki;Kim, Kyeong Ho
    • Mass Spectrometry Letters
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • A simple, specific, and economical LC-MS/MS method was investigated for the screening of 43 prescribed antihypertensive and related drugs in human urine. The urine samples were simply prepared by diluting and mixing with internal standard before directly introduced to the LC-MS/MS system, which is fast, straightforward, and cost-effective. Fractional factorial, Box-Behnken, and I-optimal design were applied to screen and optimize the mass spectrometric and chromatographic factors. The analysis was carried out on a triple quadrupole mass spectrometer system utilizing multiple reaction monitoring with positive and negative electrospray ionization method. Chromatographic separation was performed on a Thermo Scientific Accucore RP-MS column (50 × 3.0 mm ID., 2.6 ㎛) using two separate gradient elution programs established with the same mobile phases. Chromatographic separation was performed within 12 min. The optimal method was validated based on FDA guideline. The results indicated that the assay was specific, reproducible, and sensitive with the limit of detection from 0.1 to 50.0 ㎍/L. The method was linear for all analytes with coefficient of determination ranging from 0.9870 to 0.9981. The intra-assay precision was from 1.44 to 19.87% and the inter-assay precision was between 2.69 and 18.54% with the recovery rate ranges from 84.54 to 119.78% for all drugs measured. All analytes in urine samples were stable for 24 h at 25℃, and for 2 weeks at -60℃. The developed method improves on currently existing methods by including larger number of cardiovascular medications and better sensitivity of 12 analytes.

Rapid Determination of Caffeine in Forensic Aqueous Sample by Dilute and Shoot LC-MS/MS (시료 희석 직접 주입 LC-MS/MS를 이용한 법화학 수용액 시료 중 카페인 신속 분석)

  • Choi, Yun Jeong;Kim, Hee Seung;In, Moon Kyo;Kim, Jin Young
    • YAKHAK HOEJI
    • /
    • v.60 no.3
    • /
    • pp.112-117
    • /
    • 2016
  • A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the determination of caffeine in forensic aqueous sample. The centrifuged sample ($100{\mu}l$) was diluted 50-fold with distilled water. The diluted sample ($400{\mu}l$) was then diluted further with $200{\mu}l$ of 0.1% formic acid solution and $400{\mu}l$ of acetonitrile containing 500 ng of caffeine-(3-methyl-$^{13}C_3$) prior to LC-MS/MS analysis. The mobile phase was composed of 0.1% formic acid in distilled water (A) and acetonitrile (B). Chromatographic separation was performed by using a Zorbax SB-C18 ($100mm{\times}2.1mm$ i.d., $3.5{\mu}m$) column and caffeine was eluted within 1.1 min. Linear least-squares regression with a 1/x weighting factor was used to generate a calibration curve with the coefficients of determination ($r^2=0.9983$). The lower limit of quantification was $25ng/ml$ for the analyte. The process efficiency was 98.6~100.1%. Intra- and inter-day precisions were not more than 2.1% and 1.7%, while intra- and inter-day accuracies were ranged from -6.8 to 4.5%, respectively. The suitability of the method was examined by analyzing unknown forensic aqueous samples.

Simultaneous Determination of Statins in Human Urine by Dilute-and-Shoot-Liquid Chromatography-Mass Spectrometry

  • Jang, Haejong;Mai, Xuan-Lan;Lee, Gunhee;Ahn, Jae Hyoung;Rhee, Jongsook;Truong, Quoc-Ky;Vinh, Dinh;Hong, Jongki;Kim, Kyeong Ho
    • Mass Spectrometry Letters
    • /
    • v.9 no.4
    • /
    • pp.95-99
    • /
    • 2018
  • An innovative, simple, and rapid assay method based on liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was developed and validated for the simultaneous determination of eight statin drugs in human urine. A simple sample clean-up procedure using the "dilute and shoot" (DAS) approach enabled a fast and reliable analysis. The influence of the dilution factor was investigated to ensure detectability and reduce the matrix effect. Chromatographic separation was performed on a Phenomenex Kinetex C18 column ($50{\times}3.0mm$ i.d., $2.6{\mu}m$) using an elution gradient of mobile phase A composed of 0.1% acetic acid, and mobile phase B composed of acetonitrile, at a flow rate of 0.35 mL/min. Quantitation was performed on a triple quadrupole mass spectrometer operated in multiple reaction monitoring (MRM) mode using electrospray ionization in positive ion mode. The total chromatographic run time was 15 min. The method was validated for selectivity, sensitivity, recovery, linearity, accuracy, precision, and stability. The present method was successfully applied to the analysis of Rosuvastatin in urine samples after oral administration to healthy human subjects.

Determination of methamphetamine, 4-hydroxymethamphetamine, amphetamine and 4-hydroxyamphetamine in urine using dilute-and-shoot liquid chromatography-tandem mass spectrometry (시료 희석 주입 LC-MS/MS를 이용한 소변 중 메스암페타민, 4-하이드록시메스암페타민, 암페타민 및 4-하이드록시암페타민 동시 분석)

  • Heo, Bo-Reum;Kwon, NamHee;Kim, Jin Young
    • Analytical Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.161-170
    • /
    • 2018
  • The epidemic of disorders associated with synthetic stimulants, such as methamphetamine (MA) and amphetamine (AP), is a health, social, legal, and financial problem. Owing to the high potential of their abuse and addiction, reliable analytical methods are required to detect and identify MA, AP, and their metabolites in biological samples. Thus, a dilute-and-shoot liquid chromatography-tandem mass spectrophotometry (LC-MS/MS) was developed for simultaneous determination of MA, 4-hydroxymethamphetamine (4HMA), AP, and 4-hydroxyamphetamine (4HA) in urine. Urine sample ($100{\mu}L$) was mixed with $50{\mu}L$ of mobile phase consisting of 0.4 % formic acid and methanol and $50{\mu}L$ of working internal-standard solution. Aliquots of $8{\mu}L$ diluted urine was injected into the LC-MS/MS system. For all analytes, chromatographic separation was performed using a C18 reversed-phase column with gradient elution and a total run time of 5 min. The identification and quantification were performed by multiple reaction monitoring (MRM). Linear least-squares regression was conducted to generate a calibration curve, with $1/x^2$ as the weighting factor. The linear ranges were 2.0-200, 1.0-800, and 10-2500 ng/mL for 4HA and 4HMA, AP, and MA, respectively. The inter- and intraday precisions were within 6.6 %, whereas the inter- and intraday accuracies ranged from -14.9 to 11.3 %. The low limits of quantification were 2.0 ng/mL (4HA and 4HMA), 1.0 ng/mL (AP), and 10 ng/mL (MA). The proposed method exhibited satisfactory selectivity, dilution integrity, matrix effect, and stability, which are required for validation. Moreover, the purification efficiency of high-speed centrifugation was clearly higher than 6-15 % for QC samples (n=5), which was higher than that of the membrane-filtration method. The applicability of the proposed method was tested by forensic analysis of urine samples from drug abusers.