Browse > Article
http://dx.doi.org/10.5806/AST.2018.31.4.161

Determination of methamphetamine, 4-hydroxymethamphetamine, amphetamine and 4-hydroxyamphetamine in urine using dilute-and-shoot liquid chromatography-tandem mass spectrometry  

Heo, Bo-Reum (Forensic Genetics & Chemistry Division, Supreme Prosecutors' Office)
Kwon, NamHee (Forensic Genetics & Chemistry Division, Supreme Prosecutors' Office)
Kim, Jin Young (Forensic Genetics & Chemistry Division, Supreme Prosecutors' Office)
Publication Information
Analytical Science and Technology / v.31, no.4, 2018 , pp. 161-170 More about this Journal
Abstract
The epidemic of disorders associated with synthetic stimulants, such as methamphetamine (MA) and amphetamine (AP), is a health, social, legal, and financial problem. Owing to the high potential of their abuse and addiction, reliable analytical methods are required to detect and identify MA, AP, and their metabolites in biological samples. Thus, a dilute-and-shoot liquid chromatography-tandem mass spectrophotometry (LC-MS/MS) was developed for simultaneous determination of MA, 4-hydroxymethamphetamine (4HMA), AP, and 4-hydroxyamphetamine (4HA) in urine. Urine sample ($100{\mu}L$) was mixed with $50{\mu}L$ of mobile phase consisting of 0.4 % formic acid and methanol and $50{\mu}L$ of working internal-standard solution. Aliquots of $8{\mu}L$ diluted urine was injected into the LC-MS/MS system. For all analytes, chromatographic separation was performed using a C18 reversed-phase column with gradient elution and a total run time of 5 min. The identification and quantification were performed by multiple reaction monitoring (MRM). Linear least-squares regression was conducted to generate a calibration curve, with $1/x^2$ as the weighting factor. The linear ranges were 2.0-200, 1.0-800, and 10-2500 ng/mL for 4HA and 4HMA, AP, and MA, respectively. The inter- and intraday precisions were within 6.6 %, whereas the inter- and intraday accuracies ranged from -14.9 to 11.3 %. The low limits of quantification were 2.0 ng/mL (4HA and 4HMA), 1.0 ng/mL (AP), and 10 ng/mL (MA). The proposed method exhibited satisfactory selectivity, dilution integrity, matrix effect, and stability, which are required for validation. Moreover, the purification efficiency of high-speed centrifugation was clearly higher than 6-15 % for QC samples (n=5), which was higher than that of the membrane-filtration method. The applicability of the proposed method was tested by forensic analysis of urine samples from drug abusers.
Keywords
methamphetamine; 4-hydroxymethamphetamine; amphetamine; 4-hydroxyamphetamine; urine; high-speed centrifugation; LC-MS/MS;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. Lachenmeier, F. Musshoff, and B. Madea, Forensic Sci. Int., 159, 189-199 (2006).   DOI
2 M. A. von Mach, C. Weber, M. R. Meyer, L. S. Weilemann, H. H. Maurer, and F. T. Peters, Ther. Drug Monit., 29, 27-39 (2007).   DOI
3 L. Broussard, Chap. 20 Interpretation of amphetamines screening and confirmation testing, in: A. Dasgupta (Ed), Handbook of Drug Monitoring Methods - Therapeutics and Drugs of Abuse, p379, Humana Press, New Jersey, 2008.
4 M. Cheze, M. Deveaux, C. Martin, M. Lhermitte, and G. Pepin, Forensic Sci. Int., 170, 100-104 (2007).   DOI
5 A. D. De Jager and N. L. Bailey, J. Chromatogr. B, 879, 2642-2652 (2011).   DOI
6 I. L. Tsai, T. I. Weng, Y. J. Tseng, H. K. L. Tan, H. J. Sun, and C. H. Kuo, J. Anal. Toxicol. 37, 642-651 (2013).   DOI
7 X. Li, B. Shen, Z. Jiang, Y. Huang, and X. Zhuo, J. Chromatogr. A, 1302, 95-104 (2013).   DOI
8 K. Hara, S. Kashimura, Y. Hieda, and M. Kageura, J. Anal. Toxicol., 21, 54-58 (1997).   DOI
9 Y. Iwasaki, T. Sawada, K. Hatayama, A. Ohyagi, Y. Tsukuda, K. Namekawa, R. Ito, K. Saito, and H. Nakazawa, Metabolites, 2, 496-515 (2012).   DOI
10 F. T. Peters, O. H. Drummer, and F. Musshoff, Forensic Sci. Int., 165, 216-224 (2007).   DOI
11 U.S. Department of Health Human Services, Food and Drug Administration, Guidance for Industry: Bioanalytical Method Validation in U.S., Beltsville, MD, 2001.
12 B. K. Matuszewski, M. L. Constanzer, and C. M. Chavez-Eng, Anal. Chem., 75, 3019-3030 (2003).   DOI
13 R. A. Glennon, Pharmacol. Biochem. Behav., 64, 251-256 (1999).   DOI
14 United Nations Office on Drugs and Crime, World Drug Report 2017, Vienna, United Nations, 2017.
15 Supreme Prosecutors' Office, White Paper on Drug-Related Crimes 2016, Seoul, Korea, 2017.
16 J. Caldwell, L. G. Dring, and R. T. Williams, Biochem. J., 129, 11-22 (1972).   DOI
17 T. R. Gray, T. Kelly, L. L. LaGasse, L. M. Smith, C. Derauf, W. Haning, P. Grant, R. Shah, A. Arria, A. Strauss, B. M. Lester, and M. A. Huestis, Ther. Drug Monit., 31, 70-75 (2008).
18 W. A. Wan Raihana, S. H. Gan, and S. C. Tan, J. Chromatogr. B, 879, 8-16 (2011).   DOI
19 L. G. Dring, R. L. Smith, and R. T. Williams, Biochem. J. 116, 425-435 (1970).   DOI
20 A. K. Cho and J. Wright, Life Sci., 22, 363-372 (1978).   DOI
21 R. D. Stevenson and M. L. Wolraich, Pediatr. Clin. North Am., 36, 1183-1197 (1989).   DOI
22 J. D. Parkes and G. W. Fenton, J. Neurol. Neurosurg. Psychiatry, 36, 1076-1081 (1973).   DOI
23 K. Orr and D. Taylor, CNS Drugs, 21, 239-257 (2007).   DOI
24 C. M. Hartung, W. H. Canu, C. S. Cleveland, E. K. Lefler, M. J. Mignogna, D. A. Fedele, C. J. Correia, T. R. Leffingwell, and J. D. Clapp, Psychol. Addict. Behav,. 27, 832-840 (2013).   DOI
25 J. Mazanov, M. Dunn, J. Connor, and M.-L. Fielding, Performance Enhancement & Health, 2, 110-118 (2013).   DOI
26 A. D. DeSantis, E. M. Webb, and S. M. Noar, J. Am. Coll. Health, 57, 315-324 (2008).   DOI
27 M. R. Meyer and H. H. Maurer, Pharmacogenomics, 12, 215-233 (2011).   DOI
28 W. Kwon, S. I. Suh, M. K. In, and J. Y. Kim, Mass Spectrom. Lett., 5, 104-109 (2014).   DOI