• Title/Summary/Keyword: dilatancy

Search Result 100, Processing Time 0.021 seconds

A Study of a Variety of Sands in Stress-dilatancy Relationships (각 종 모래의 Stress-dilatancy 관계에 관한 연구)

  • 박춘식;장정욱
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.41-48
    • /
    • 2002
  • Anisotropy of stiffness, from extremely small strains to post-failure strains, of isotropically consolidated air-pluviated sands in plane strain compression was studied by using the newly developed instrumentation fur small strain measurements, Seven types of sand of world-wide origins were tested, which have been extensively used for research purposes. Stress-strain relationships for a wide range of strain from about 0.0001% to the peak were obtained by measuring axial and lateral strains locally free from the effects of bedding and membrane penetration errors at the specimen boundaries. The result showed that the relationship between the principal stress ratio and the principal strain increment ratio was constant, being rarely affected by the over-consolidation ratio and the confining pressure. Although in the small strain the anisotropy hardly affected the relationship between the principal stress ratio and the principal strain increment ratio, the K value around the peak varied according to the $\delta$ value. In general, Rowe\`s stress-dilatancy equation works fairly well from the small strain to the peak.

Pullout Resistance Increase in Soil-Nailing with Pressurized Grouting: Verification of Theoretical Solution (압력식 쏘일네일링의 인발저항력 증가: 이론적 검증)

  • Seo, Hyung-Joon;Park, Sung-Won;Jeong, Kyeong-Han;Choi, Hang-Seok;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.419-433
    • /
    • 2009
  • Pressure grouting is a common technique in geotechnical engineering to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressure grouting has been applied to a soil-nailing system which is widely used to improve slope stability. The soil-nailing design has been empirically performed in most geotechnical applications because the interaction between pressurized grouting paste and the adjacent ground mass is complicated and difficult to analyze. The purpose of this study is to analyze the increase of pullout resistance induced by pressurized grouting with the aid of performing laboratory model tests and field tests. In this paper, two main causes of pullout resistance increases induced by pressurized grouting were verified: the increase of residual stress; and the increase of coefficient of pullout friction. From the laboratory tests, it was found that residual stress in borehole increases by pressurized grouting and dilatancy angle could be estimated by cavity expansion theory using the measured wall displacements. From the field test results, the pullout resistance of soil-nailing with pressurized grouting was found to be 10% larger than that of soil-nailing with gravitational grouting, mainly caused by mean normal stress increase and dilatancy effect. So, the pullout resistance could be estimated by considering these two effects. The radial displacement increases with dilatancy angle increase and the dilatancy angle decreases with injection pressure increase. The measured pullout resistance obtained from field tests is in good agreement with the estimated one from the cavity expansion theory.

  • PDF

The dilatancy and numerical simulation of failure behavior of granular materials based on Cosserat model

  • Chu, Xihua;Yu, Cun;Xu, Yuanjie
    • Interaction and multiscale mechanics
    • /
    • v.5 no.2
    • /
    • pp.157-168
    • /
    • 2012
  • The dilatancy of granular materials has significant influence on its mechanical behaviors. The dilation angle is taken as a constant in conventional associated or non-associated flow rules based on Drucker-Prager yields theory. However, various experimental results show the dilatancy changes during progressive failure of granular materials. A non-associated flow rule with evolution of dilation angle is adopted in this study, and Cosserat continuum theory is used to describe the behaviors of granular materials for considering to some extent the its internal structure. Numerical examples focus on the bearing capacity and localization of granular materials, and results illustrate the capability and performance of the presented model in modeling the effect on failure behavior of granular materials.

A Constitutive Model on the Behavior Under $K_0$ Condition for Cohesionless Soils and Optimization Method of Parameter Evaluation Based on Genetic Algorithm (사질토의 $K_0$ 조건하 거동에 대한 구성모델 및 유전자 알고리즘을 적용한 계수의 최적화 산정기법)

  • 오세붕;박현일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.37-48
    • /
    • 2004
  • This study is focused on the constitutive model in order to represent brittleness and dilatancy for cohesionless soils. The constitutive model was based on an anisotropic hardening rule derived from generalized isotropic hardening nile, which includes an appropriate hardening equation for the overall strain behavior at small to large strains. The yield surface is a simple cylinder type in stress space and it makes the model practically useful. Hence dilatancy behavior in cohesionless soils could be modeled reasonably. A peak stress ratio was defined in order to model brittle stress-strain relationships. An optimized design methodology was proposed on the basis of real-coded genetic algorithm in order to determine parameters for the proposed model systematically. The material parameters were then determined by that algorithm. In order to verify the proposed model, triaxial tests were performed under $K_0$ conditions far weathered soils. In comparison with the triaxial test results under $K_0$ conditions, the proposed model could calculate appropriately the actual effective stress behavior on brittle stress-strain relationships and dilatancy.

Study on Shear Characteristics of Saturated Clay by Critical State Concept (한계상태(限界狀態) 개념(槪念)에 의한 포화점토(飽和粘土)의 전단특성(剪斷特性)에 관한 연구(研究))

  • Park, Byung Ki;Jeong, Jin Sup;Lee, Moon Soo;Kang, Byung Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.45-59
    • /
    • 1983
  • This study aims at investigating the deformation and strength characteristics on reconsolidated-remoleded saturated clay sampled at the downstream of Young-san river, in Cheollanamdo through a series of both drained and underained triaxial tests by means of the critical state concept. Among several constitutive equations developed so far, the Cam-clay model, the modified Cam-clay model and the dilatancy model are used. The prediction of strains is obtained and the value of prediction is compared with that of observation. For the clay specimen, the prediction of volumetric strain on the dilatancy model is well consistent with the observation and the prediction of shear strain on the modified Cam-clay model coincides exactly with the observation.

  • PDF

Theoretical model for the shear strength of rock discontinuities with non-associated flow laws

  • Galindo, Ruben;Andres, Jose L.;Lara, Antonio;Xu, Bin;Cao, Zhigang;Cai, Yuanqiang
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.307-321
    • /
    • 2021
  • In an earlier publication (Serrano et al. 2014), the theoretical basis for evaluating the shear strength in rock joints was presented and used to derive an equation that governs the relationship between tangential and normal stresses on the joint during slippage between the joint faces. In this paper, the theoretical equation is applied to two non-linear failure criteria by using non-associated flow laws, including the modified Hoek and Brown and modified Mohr-Coulomb equations. The theoretical model considers the geometric dilatancy, the instantaneous friction angle, and a parameter that considers joint surface roughness as dependent variables. This model uses a similar equation structure to the empirical law that was proposed by Barton in 1973. However, a good correlation with the empirical values and, therefore, Barton's equation is necessary to incorporate a non-associated flow law that governs breakage processes in rock masses and becomes more significant in highly fractured media, which can be induced in a rock joint. A linear law of dilatancy is used to assess the importance of the non-associated flow to obtain very close values for different roughness states, so the best results are obtained for null material dilatancy, which considers significant changes that correspond to soft rock masses or altered zones of weakness.

Characteristics of Shear Behavior of Remolded Nak-dong River Sandy Silt (재성형된 낙동강 모래질 실트의 전단거동 특성)

  • Kim Young-Su;Tint Khin Swe;Kim Dae-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.41-50
    • /
    • 2007
  • The results from normally consolidated isotropic drained and undrained triaxial compression tests (NCIU and NCID) on sand with high silt content were presented in this paper. The experiments were performed on specimens of Nak-dong River sand with 63% silt content under effective confined pressures, 100 kPa to 400 kPa. From test results, Sandy silt became initially compressive but eventually appeared to provide dilatancy response throughout the entire stress-strain curve The behavior of sandy silt was more difficult to characterize than that of clay and sand due to lower plastic characteristic. Especially, the samples exhibited dilatancy development during shear after failure. The shear behavior and shear strength parameters of sandy silt can be determined as stress-strain behaviors are described by the Mohr-Coulomb failure criterion. The shear behaviors were observed increasing dilatancy volume change tendency with strain-softening tendency after failure. In this paper, the behavior of dilatancy depends on not only sand content but also fine content with low-cohesion during shear in the samples of sandy silt.

Mechanical response of rockfills in a simulated true triaxial test: A combined FDEM study

  • Ma, Gang;Chang, Xiao-Lin;Zhou, Wei;Ng, Tang-Tat
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.317-333
    • /
    • 2014
  • The study of the mechanical behavior of rockfill materials under three-dimensional loading conditions is a current research focus area. This paper presents a microscale numerical study of rockfill deformation and strength characteristics using the Combined Finite-Discrete Element Method (FDEM). Two features unique to this study are the consideration of irregular particle shapes and particle crushability. A polydisperse assembly of irregular polyhedra was prepared to reproduce the mechanical behavior of rockfill materials subjected to axial compression at a constant mean stress for a range of intermediate principal stress ratios in the interval [0, 1]. The simulation results, including the stress-strain characteristics, relationship between principal strains, and principal deviator strains are discussed. The stress-dilatancy behavior is described using a linear dilatancy equation with its material constants varying with the intermediate principal stress ratio. The failure surface in the principal stress space and its traces in the deviatoric and meridian plane are also presented. The modified Lade-Duncan criterion most closely describes the stress points at failure.

Rheological Properties of Cement Pastes Containing Metakaoline (메타카올린을 혼합한 시멘트 페이스트의 유동특성)

  • 송종택;최해영
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1229-1234
    • /
    • 2003
  • The utilization of metakaoline as a mineral admixture for cement has received considerable attention in recent years. This paper investigates the rheological properties of cement pastes containing metakaoline in view of fluidity. The rheology of the paste is assessed by using a BROOKFIELD RVDV II + viscometer (SC4-21, 29) having cylindrical spindle. The results show the fluidity of cement pastes with metakaoline is increased by increasing W/S ratio and the dosage of superplastcizer. And also cement pastes with metakaoline as a partial replacement of cement show a dilatant behavior. Dilatancy is heavily influenced by W/S ratio and by the amount of metakaoline. However the thixotropy of the pastes is increased by silica fume.

Development of Constitutive Model for the Prediction of Behaviour of Unsaturated Soil( II) - Development and application of constitutive model - (불포화토의 거동예측을 위한 구성식 개발(II) -구성식의 개발 및 적용-)

  • 송창섭;장병욱
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.1
    • /
    • pp.81-89
    • /
    • 1995
  • The aim of the work described in this paper is to develope a constitutive model for the prediction of an unsaturated Soil and to confirm the application of the model, which is composed of the elastic and plastic part in consideration of the matric suction and the net mean stress. From test results, volume changes and deviator stresses are analyzed at each state and their relationships are formulated. And the application of the model to silty sands is con- firmed by the comparison between test and predicted results. During drying-wetting and loading-unloading processes for isotropic states, the agreement between predicted and test results are satisfactory. And predicted deviator stresses are well agreed with test results in shearing process. Overall acceptable predictions are reproduced in high confining pressure. Usefulness of the model is confirmed for the unsat- urated soil except volumetric strain, which is not well agreed with the test results due to deficiency of dilatancy of the model in low confining pressure. It is, therefore, recom- mended to study the behavior of dilatancy for an unsaturated soil.

  • PDF