• Title/Summary/Keyword: digital surface map

Search Result 182, Processing Time 0.022 seconds

A Simulation of 3-D Navigation System of the Helicopter based on TRN Using Matlab

  • Kim, Eui-Hong;Lee, Hong-Ro
    • Spatial Information Research
    • /
    • v.15 no.4
    • /
    • pp.363-370
    • /
    • 2007
  • This study has been carried for the development of the basic algorithm of helicopter navigation system based on TRN (Terrain Referenced Navigation) with information input from the GPS. The helicopter determines flight path due to Origination-Destination analysis on the Cartesian coordinate system of 3-D DTM. This system shows 3-D mesh map and the O-D flight path profile for the pilot's acknowledgement of the terrain, at first. The system builds TCF (terrain clearance floor) far the buffer zone upon the surface of ground relief to avid the ground collision. If the helicopter enters to the buffer zone during navigation, the real-time warning message which commands to raise the body pops up using Matlab menu. While departing or landing, control of the height of the body is possible. At present, the information (x, y, z coordinates) from the GPS is assumed to be input into the system every 92.8 m of horizontal distance while navigating along flight path. DTM of 3" interval has been adopted from that which was provided by ChumSungDae Co., Ltd..

  • PDF

Stream Environment Monitoring using UAV Images (RGB, Thermal Infrared) (UAV 영상(RGB, 적외 열 영상)을 활용한 하천환경 모니터링)

  • Kang, Joon-Oh;Kim, Dal-Joo;Han, Woong-Ji;Lee, Yong-Chang
    • Journal of Urban Science
    • /
    • v.6 no.2
    • /
    • pp.17-27
    • /
    • 2017
  • Recently, civil complaints have increased due to water pollution and bad smell in rivers. Therefore, attention is focused on improving the river environment. The purpose of this study is to acquire RGB and thermal infrared images using UAV for sewage outlet and to monitor the status of stream pollution and the applicability UAV based images for river embankment maintenance plan was examined. The accuracy of the 3D model was examination by SfM(Structure from Motion) based images analysis on river embankment maintenance area. Especially, The wastewater discharged from the factory near the river was detected as an thermal infrared images and the flow of wastewater was monitored. As a result of the study, we could monitor the cause and flows of wastewater pollution by detecting temperature change caused by wastewater inflow using UAV images. In addition, UAV based a high precision 3D model (DTM, Digital Topographic Map, Orthophoto Mosaic) was produced to obtain precise DSM(Digital Surface Model) and vegetation cover information for river embankment maintenance.

  • PDF

Implementing the Urban Effect in an Interpolation Scheme for Monthly Normals of Daily Minimum Temperature (도시효과를 고려한 일 최저기온의 월별 평년값 분포 추정)

  • 최재연;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.4
    • /
    • pp.203-212
    • /
    • 2002
  • This study was conducted to remove the urban heat island effects embedded in the interpolated surfaces of daily minimum temperature in the Korean Peninsula. Fifty six standard weather stations are usually used to generate the gridded temperature surface in South Korea. Since most of the weather stations are located in heavily populated and urbanized areas, the observed minimum temperature data are contaminated with the so-called urban heat island effect. Without an appropriate correction, temperature estimates over rural area or forests might deviate significantly from the actual values. We simulated the spatial pattern of population distribution within any single population reporting district (city or country) by allocating the reported population to the "urban" pixels of a land cover map with a 30 by 30 m spacing. By using this "digital population model" (DPM), we can simulate the horizontal diffusion of urban effect, which is not possible with the spatially discontinuous nature of the population statistics fer each city or county. The temperature estimation error from the existing interpolation scheme, which considers both the distance and the altitude effects, was regressed to the DPMs smoothed at 5 different scales, i.e., the radial extent of 0.5, 1.5, 2.5, 3.5 and 5.0 km. Optimum regression models were used in conjunction with the distance-altitude interpolation to predict monthly normals of daily minimum temperature in South Korea far 1971-2000 period. Cross validation showed around 50% reduction in terms of RMSE and MAE over all months compared with those by the conventional method.conventional method.

Digital Processing and Acoustic Backscattering Characteristics on the Seafloor Image by Side Scan Sonar (Side Scan Sonar 탐사자료의 영상처리와 해저면 Backscattering 음향특성)

  • 김성렬;유홍룡
    • 한국해양학회지
    • /
    • v.22 no.3
    • /
    • pp.143-152
    • /
    • 1987
  • The digital data were obtained using Kennedy 9000 magnetic tape deck which was connected to the SMS960 side scan sonar during the field operations. The data of three consecutive survey tracks near Seongsan-po, Cheju were used for the development of this study. The softwares were mainly written in Fortran-77 using VAX 11/780 MINI-COMPUTER (CPU Memory; 4MB). The established mapping system consists of the pretreatment and the digital processing of seafloor image data. The pretreatment was necessary because the raw digital data format of the field magnetic tapes was not compatible to the VAX system. Therefore the raw data were read by the personal computer using the Assembler language and the data format was converted to IBM compatible, and next data were communicated to the VAX system. The digital processing includes geometrical correction for slant range, statistical analysis and cartography of the seafloor image. The sound speed in the water column was assumed 1,500 m/sec for the slant range correction and the moving average method was used for the signal trace smoothing. Histograms and cumulative curves were established for the statistical analysis, that was purposed to classify the backscattering strength from the sea-bottom. The seafloor image was displayed on the color screen of the TEKTRONIX 4113B terminal. According to the brief interpretation of the result image map, rocky and sedimentary bottoms were very well discriminated. Also it was shown that the backscattered acoustic pressurecorrelateswith the grain size and sorting of surface sediments.

  • PDF

Development of the Precision Image Processing System for CAS-500 (국토관측위성용 정밀영상생성시스템 개발)

  • Park, Hyeongjun;Son, Jong-Hwan;Jung, Hyung-Sup;Kweon, Ki-Eok;Lee, Kye-Dong;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.881-891
    • /
    • 2020
  • Recently, the Ministry of Land, Infrastructure and Transport and the Ministry of Science and ICT are developing the Land Observation Satellite (CAS-500) to meet increased demand for high-resolution satellite images. Expected image products of CAS-500 includes precision orthoimage, Digital Surface Model (DSM), change detection map, etc. The quality of these products is determined based on the geometric accuracy of satellite images. Therefore, it is important to make precision geometric corrections of CAS-500 images to produce high-quality products. Geometric correction requires the Ground Control Point (GCP), which is usually extracted manually using orthoimages and digital map. This requires a lot of time to acquire GCPs. Therefore, it is necessary to automatically extract GCPs and reduce the time required for GCP extraction and orthoimage generation. To this end, the Precision Image Processing (PIP) System was developed for CAS-500 images to minimize user intervention in GCP extraction. This paper explains the products, processing steps and the function modules and Database of the PIP System. The performance of the System in terms of processing speed, is also presented. It is expected that through the developed System, precise orthoimages can be generated from all CAS-500 images over the Korean peninsula promptly. As future studies, we need to extend the System to handle automated orthoimage generation for overseas regions.

A Study on the Habitat Mapping of Meretrix lyrata Using Remote Sensing at Ben-tre Tidal Flat, Vietnam (원격탐사를 활용한 베트남 Ben-tre 갯벌의 Meretrix lyrata 서식지 매핑 연구)

  • Hwang, Deuk Jae;Woo, Han Jun;Koo, Bon Joo;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.975-987
    • /
    • 2021
  • Potential habitat mapping of Meretrix lyrata which is found in large parts of South East Asian tidal flat was carried out to find out causes of collective death. Frequency Ratio (FR) method, one of geospatialstatistical method, was employed with some benthic environmental factors; Digital elevation model (DEM) made from Landsat imagery, slope, tidal channel distance, tidal channel density, sedimentary facesfrom WorldView-02 image. Field survey was carried out to measure elevation of each station and to collect surface sediment and benthos samples. Potential habitat maps of the all clams and the juvenile clams were made and accuracy of each map showed a good performance, 76.82 % and 69.51 %. Both adult and juvenile clams prefer sand dominant tidal flat. But suitable elevation of adult clams is ranged from -0.2 to 0.2 m, and that of juvenile clams is ranged from 0 to 0.3 m. Tidal channel didn't affect the habitat of juvenile clams, but it affected the adult clams. In the furtherstudy, comparison with case of Korean tidal flat will be carried out to improve a performance of the potential habitat map. Change in the benthic echo-system caused by climate change will be predictable through potential habitat mapping of macro benthos.

CAS 500-1/2 Image Utilization Technology and System Development: Achievement and Contribution (국토위성정보 활용기술 및 운영시스템 개발: 성과 및 의의)

  • Yoon, Sung-Joo;Son, Jonghwan;Park, Hyeongjun;Seo, Junghoon;Lee, Yoojin;Ban, Seunghwan;Choi, Jae-Seung;Kim, Byung-Guk;Lee, Hyun jik;Lee, Kyu-sung;Kweon, Ki-Eok;Lee, Kye-Dong;Jung, Hyung-sup;Choung, Yun-Jae;Choi, Hyun;Koo, Daesung;Choi, Myungjin;Shin, Yunsoo;Choi, Jaewan;Eo, Yang-Dam;Jeong, Jong-chul;Han, Youkyung;Oh, Jaehong;Rhee, Sooahm;Chang, Eunmi;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.867-879
    • /
    • 2020
  • As the era of space technology utilization is approaching, the launch of CAS (Compact Advanced Satellite) 500-1/2 satellites is scheduled during 2021 for acquisition of high-resolution images. Accordingly, the increase of image usability and processing efficiency has been emphasized as key design concepts of the CAS 500-1/2 ground station. In this regard, "CAS 500-1/2 Image Acquisition and Utilization Technology Development" project has been carried out to develop core technologies and processing systems for CAS 500-1/2 data collecting, processing, managing and distributing. In this paper, we introduce the results of the above project. We developed an operation system to generate precision images automatically with GCP (Ground Control Point) chip DB (Database) and DEM (Digital Elevation Model) DB over the entire Korean peninsula. We also developed the system to produce ortho-rectified images indexed to 1:5,000 map grids, and hence set a foundation for ARD (Analysis Ready Data)system. In addition, we linked various application software to the operation system and systematically produce mosaic images, DSM (Digital Surface Model)/DTM (Digital Terrain Model), spatial feature thematic map, and change detection thematic map. The major contribution of the developed system and technologies includes that precision images are to be automatically generated using GCP chip DB for the first time in Korea and the various utilization product technologies incorporated into the operation system of a satellite ground station. The developed operation system has been installed on Korea Land Observation Satellite Information Center of the NGII (National Geographic Information Institute). We expect the system to contribute greatly to the center's work and provide a standard for future ground station systems of earth observation satellites.

Comparative Evaluation of Impervious Ratio between KNU and HKU Campus Using Google Earth (Google Earth를 이용한 경북대와 홍콩대 캠퍼스의 불투수율 비교평가)

  • Um, Jung-Sup
    • Journal of the Korean association of regional geographers
    • /
    • v.15 no.3
    • /
    • pp.421-433
    • /
    • 2009
  • The impervious ratio was frequently employed as a fundamental attribute will be used as a proxy of the total environmental burden in the urban area since it may contribute as much or more on a cumulative basis to the overall environmental condition. This research proposes a comparative evaluation framework in a more objective and Quantitative way for an impervious ratio in the university campus, using the Google Earth. Two university campuses (Kyungpook National University: KNU, Hong Kong University: HKUJ were selected as survey objectives in order to evaluate the potential of Google Earth in monitoring impervious conditions in the campus. The 61cm resolution of Quickbird data combined with digital map realistically identified the major type of impervious surface such as road, building and parking lots in the study area by large scale spatial precision. The impervious zones with persistently high road density and parking space were specifically identified over the KNU campus while the HKC campus was intensively covered by tree, resulting in almost twice (31%). as compared to KNU (18.4%), The methods of characterizing impervious surface used in this study are easily replicable using data that are primarily publicly available, and therefore the collection of impervious coverage data via Google Earth is, therefore, proposed as a practical alternative.

  • PDF

Accuracy Assessment of Ground Information Extracting Method from LiDAR Data (LiDAR자료의 지면정보 추출기법의 정확도 평가)

  • Choi, Yun-Woong;Choi, Nei-In;Lee, Joon-Whoan;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.19-26
    • /
    • 2006
  • This study assessed the accuracies of the ground information extracting methods from the LiDAR data. Especially, it compared two kinds of method, one of them is using directly the raw LiDAR data which is point type vector data and the other is using changed data to DSM type as the normal grid type. The methods using Local Maxima and Entropy methods are applied as a former case, and for the other case, this study applies the method using edge detection with filtering and the generated reference surface by the mean filtering. Then, the accuracy assessment are performed with these results, DEM constructed manually and the error permitted limit in scale of digital map. As a results, each DEM mean errors of methods using edge detection with filtering, reference surface, Local Maxima and Entropy are 0.27m, 2.43m, 0.13m and 0.10m respectively. Hence, the method using entropy presented the highest accuracy. And an accuracy from a method directly using the raw LiDAR data has higher accuracy than the method using changed data to DSM type relatively.

  • PDF

A Study on Landscape Management Techniques of Cultural Heritage Designated Area Using 3D Mapping Method (3D맵핑을 이용한 문화재 지정구역 경관관리기법 연구)

  • Kim, Jae-Ung;Lee, Won-Ho;Shin, Hyun-Sil
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.1
    • /
    • pp.97-108
    • /
    • 2018
  • The purpose of this study is to propose the construction of a visibility analysis model, which is the basis of the analysis for landscape management on the heritage sites such as historic villages and scenic sites. Results of the visibility analysis using DEM and the visibility analysis of DSM based on 3D mapping data are compared as follows: Precision level of the extracted data was confirmed to be less than 6.5cm, based on RTK survey results produced by constructing orthoimage data and DSM from the digital data of 2cm-class GSD(Ground Sample Distance) obtained by using a small UAV(Unmanned Aerial Vehicle). As a result of comparing the visibility analysis data of Digital Surface Model (DSM) using a small UAV with Digital Elevation Model(DEM) applying the height of the building to the Digital Topographic Map, it was confirmed that more realistic visibility analysis can be accomplished by applying DSM, as the structures such as fences, trees, and houses are reflected in the topographic data. The visibility analysis model using the 3D mapping technique can efficiently obtain the constantly changing topographic information when needed, by immediately constructing the data by utilizing a small UAV. It seems to be possible to propose a reasonable analysis result for preservation management such as landscape evaluation of cultural property.