• Title/Summary/Keyword: digital sensing

Search Result 928, Processing Time 0.026 seconds

Implementation of 24-Channel Capacitive Touch Sensing ASIC (24 채널 정전 용량형 터치 검출 ASIC의 구현)

  • Lee, Kyoung-Jae;Han, Pyo-Young;Lee, Hyun-Seok;Bae, Jin-Woong;Kim, Eung-Soo;Nam, Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.5
    • /
    • pp.34-41
    • /
    • 2011
  • This paper presents a 24 channel capacitive touch sensing ASIC. This ASIC consists of analog circuit part and digital circuit part. Analog circuits convert user screen touch into electrical signal and digital circuits represent this signal change as digital data. Digital circuit also has an I2C interface for operation parameter reconfiguration from host machine. This interface guarantees the stable operation of the ASIC even against wide operation condition change. This chip is implemented with 0.18 um CMOS process. Its area is about 3 $mm^2$ and power consumption is 5.3mW. A number of EDA tools from Cadence and Synopsys are used for chip design.

Development of lidar detection system for improvement of measurement range (Combined photon counting detection and analog-to-digital signal) (라이다 측정 거리 향상을 위한 통합 수신 시스템 개발 (아날로그방식과 광자계수방식 신호 접합))

  • Shin, Dong Ho;Noh, Young Min;Shin, Sung Kyun;Kim, Young J.
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.251-258
    • /
    • 2014
  • We upgraded to utilize a novel method for combining the analog to digital converter and photon-counting measurements for backscatter photon signal of lidar. We have and improve the standard combining method for determination of those conversion factors between analog to digital converter data and photon-counting data measurement which is conducted dead time correction. The combining method and dead time correction method presented here has been successfully applied to experimental data obtained in Gwangju, Korea.

DEM Generation of Tidal Flat in Suncheon Bay Using Digital Aerial Images (디지털 항공사진을 이용한 순천만 갯벌 DEM 제작)

  • Ahn, Ki-Weon;Lee, Hyo-Seong;Kim, Duk-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.411-420
    • /
    • 2011
  • In this study, a digital elevation model (DEM) in tidal flat of Suncheon Bay, one of the most ecological preserved area in the world, was generated from digital aerial stereo-images. The focal lengths for the aerial stereo-images were adjusted using ground control points (GCPs) in order to improve the accuracy of camera parameters. We proposed matching sizes suitable for generating DEM in tidal flat and a method for eliminating excessive position errors using intersection-distance($P_R$) threshold value. The accuracies of the DEM generated from the proposed method as well as the commercial S/W were compared with the elevation profiles measured by Total Station in the filed. As the results, the DEM generated by the proposed method showed better result (maximum deviation is a -21 centimeters) with detailed topography than DEM by the commercial S/W in the region. These results suggest that the DEM of tidal flat, which hardly obtained with the traditional methods, can be generated from digital aerial images by applying the proposed method in this study. We believe that the generated DEM in tidal flat can be an essential data for monitoring the sediment erosion and deposit of the tidal flat.

Satellite Image Processing Software for Value-Added Products

  • Lee, Hae-Yeoun;Park, Won-Kyu;Kim, Seung-Bum;Kim, Tae-Jung;Yoon, Tae-Hun;Shin, Dong-Seok;Lee, Heung-Kyu
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.339-348
    • /
    • 1999
  • To extract value-added products which are important in scientific area and practical life, e.g. digital elevation models, ortho-rectified images and geometric corrected images, Satellite Technology Research Center at Korea Advanced Institute of Science and Technology has developed a satellite image processing software called "Valadd-Pro". In this paper, "Valadd-Pro" software is briefly introduced and its main components such as precise geometric correction, ortho-rectification and digital elevation model extraction component are described. The performance of "Valadd-Pro" software was assessed on 10m resolution 6000 $\times$ 6000 SPOT panchromatic images (60km $\times$ 60km) using ground control points from GPS measurements. The height accuracy was measured by comparing our results with 100m resolution $DTEDs^{1)}$ produced by USGS and 60m resolution DEMs generated from digitized contours produced by National Geography Institute. Also, to show the superior performance of "Valadd-Pro" software, we compared the performance with that of commonly used PCI$\circledR$ commercial software. Based on the results, the geometric correction of "Valadd-Pro" software needs fewer ground control points than that of PCI$\circledR$ software and the ortho-rectification of "Valadd-Pro" software shows similar performance to that of PCI$\circledR$ software. In the digital elevation model extraction, "Valadd-Pro" software is two times more accurate and four times faster than PCI$\circledR$ software.ccurate and four times faster than PCI$\circledR$ software.

A Method of DTM Generation from KOMPSAT-3A Stereo Images using Low-resolution Terrain Data (저해상도 지형 자료를 활용한 KOMPSAT-3A 스테레오 영상 기반의 DTM 생성 방법)

  • Ahn, Heeran;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.715-726
    • /
    • 2019
  • With the increasing prevalence of high-resolution satellite images, the need for technology to generate accurate 3D information from the satellite images is emphasized. In order to create a digital terrain model (DTM) that is widely used in applications such as change detection and object extraction, it is necessary to extract trees, buildings, etc. that exist in the digital surface model (DSM) and estimate the height of the ground. This paper presents a method for automatically generating DTM from DSM extracted from KOMPSAT-3A stereo images. The technique was developed to detect the non-ground area and estimate the height value of the ground by using the previously constructed low-resolution topographic data. The average vertical accuracy of DTMs generated in the four experimental sites with various topographical characteristics, such as mountainous terrain, densely built area, flat topography, and complex terrain was about 5.8 meters. The proposed technique would be useful to produce high-quality DTMs that represent precise features of the bare-earth's surface.

Quantitative Estimation of Shoreline Changes Using Multi-sensor Datasets: A Case Study for Bangamoeri Beaches (다중센서를 이용한 해안선의 정량적 변화 추정: 방아머리 해빈을 중심으로)

  • Yun, Kong-Hyun;Song, Yeong Sun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.693-703
    • /
    • 2019
  • Long-term coastal topographical data is critical for analyzing temporal and spatial changes in shorelines. Especially understanding the change trends is essential for future coastal management. For this research, in the data preparation, we obtained digital aerial images, terrestrial laser scanning data and UAV images in the year of 2009. 2018 and 2019 respectively. Also tidal observation data obtained by the Korea Hydrographic and Oceanographic Agency were used for Bangamoeri beach located in Ansan, Gyeonggi-do. In the process of it, we applied the photogrammetric technique to extract the coastline of 4.40 m from the stereo images of 2009 by stereoscopic viewing. In 2018, digital elevation model was generated by using the raw data obtained from the laser scanner and the corresponding shoreline was semi-automatically extracted. In 2019, a digital elevation model was generated from the drone images to extract the coastline. Finally the change rate of shorelines was calculated using Digital Shoreline Analysis System. Also qualitative analysis was presented.

Design and Implementation of Turbidity Measurement Module of Plume using Optical Sensing (광학센싱을 이용한 굴뚝연기의 혼탁도 측정모듈의 설계 및 구현)

  • Ban, ChaeHoon;Son, HyunGeun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.312-315
    • /
    • 2014
  • Smoke generated from business establishments and factories will not only cause air pollution but also have a significant impact on the human body. Generally, the most common method for measuring the turbidity of the plume generated from the stack is a method of observing by the transmissometer mounted in the chimney or Method 9 from the US EPA(Environmental Protection Agency) which is a visual method of determining plume turbid emitted from stationary sources. However, these methods need a lot of cost to build and maintain. In this paper, we build a plume turbidity measurement module programs using light sensing. We design and implement a module which acquires the pictures of the plume using a digital camera and measures the turbidity of it using the DOM(Digital Optical Method). In addition, we demonstrate the excellence by comparing and analyzing implemented module and other methods.

  • PDF

Forest Vertical Structure Classification in Gongju City, Korea from Optic and RADAR Satellite Images Using Artificial Neural Network (광학 및 레이더 위성영상으로부터 인공신경망을 이용한 공주시 산림의 층위구조 분류)

  • Lee, Yong-Suk;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.447-455
    • /
    • 2019
  • Since the forest type map in Korea has been mostly constructed every five years, the forest information from the map lacks up-to-date information. Forest research has been carried out by aerial photogrammetry and field surveys, and hence it took a lot of times and money. The vertical structure of forests is an important factor in evaluating forest diversity and environment. The vertical structure is essential information, but the observation of the vertical structure is not easy because the vertical structure indicates the internal structure of forests. In this study, the index map and texture map produced from KOMPSAT-3/3A/5 satellite images and the canopy information generated by the difference between DSM (Digital Surface Model) and DTM (Digital Terrain Model) were classified using the artificial neural network. The vertical structure of forests of single and multi-layer forests was classified to identify 81.59% of the final classification result.

Fire Monitoring System for Traditional Markets based on Digital Twin-IoT Sensing (디지털 트윈 & IoT Sensing 융합 기반 전통시장 화재 모니터링 시스템)

  • Jung-Taek Hong;Kyu-Hyup Lee;Jin-Woo Song;Seo-Joon Lee;Young-Hee Chang;Soon-Wook Kwon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1251-1258
    • /
    • 2023
  • Traditional markets are infrastructure with facilities and characteristics of very high population density. Recently, arcades have been installed through traditional market modernization policies, and aging infrastructure has been repaired. However, gas and electrical facilities of traditional markets cannot be easily replaced because of its high density. And because regular inspections are not conducted, management of facilities is on very poor condition. In addition, when a fire occurs in a traditional market, the fire easily spreads to nearby stores and is likely to spread to a large fire because of a lot of highly flammable substances. Smoke detectors and heat detectors are installed in most traditional markets to monitor fires, but malfunctions are frequent due to the nature of smoke detectors and heat detectors, and network facilities are not properly maintained. Therefore, in this study, gas detection sensors and flame detectors are additionally installed in Gwangmyeong Traditional Market, and a digital twin-based traditional market fire monitoring system is implemented in conjunction with existing sensors in the market's 3D model. With this digital twin based fire monitoring system, we can reduce the malfunctions of fire detect sensors, and can easily guide the evacuation route.

PARALLAX ADJUSTMENT FOR REALISTIC 3D STEREO VIEWING OF A SINGLE REMOTE SENSING IMAGE

  • Kim, Hye-Jin;Choi, Jae-Wan;Chang, An-Jin;Yu, Ki-Yun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.452-455
    • /
    • 2007
  • 3D stereoscopic viewing of large scale imagery, such as aerial photography and satellite images, needs different parallaxes relative to the display scale. For example, when a viewer sees a stereoscopic image of aerial photography, the optimal parallax of its zoom-in image should be smaller than that of its zoom-out. Therefore, relative parallax adjustment according to the display scale is required. Merely adjusting the spacing between stereo images is not appropriate because the depths of the whole image are either exaggerated or reduced entirely. This paper focuses on the improving stereoscopic viewing with a single remote sensing image and a digital surface model (DSM). We present the parallax adjustment technique to maximize the 3D realistic effect and the visual comfort. For remote sensing data, DSM height value can be regarded as disparity. There are two possible kinds of methods to adjust the relative parallax with a single image performance. One is the DSM compression technique: the other is an adjustment of the distance between the original image and its stereo-mate. In our approach, we carried out a test to evaluate the optimal distance between a single remote sensing image and its stereo-mate, relative to the viewing scale. Several synthetic stereo-mates according to certain viewing scale were created using a parallel projection model and their anaglyphs were estimated visually. The occlusion of the synthetic stereo-mate was restored by the inpainting method using the fields of experts (FoE) model. With the experiments using QuickBird imagery, we could obtain stereoscopic images with optimized parallax at varied display scales.

  • PDF