Browse > Article
http://dx.doi.org/10.7780/kjrs.2014.30.2.8

Development of lidar detection system for improvement of measurement range (Combined photon counting detection and analog-to-digital signal)  

Shin, Dong Ho (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST))
Noh, Young Min (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST))
Shin, Sung Kyun (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST))
Kim, Young J. (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST))
Publication Information
Korean Journal of Remote Sensing / v.30, no.2, 2014 , pp. 251-258 More about this Journal
Abstract
We upgraded to utilize a novel method for combining the analog to digital converter and photon-counting measurements for backscatter photon signal of lidar. We have and improve the standard combining method for determination of those conversion factors between analog to digital converter data and photon-counting data measurement which is conducted dead time correction. The combining method and dead time correction method presented here has been successfully applied to experimental data obtained in Gwangju, Korea.
Keywords
Lidar; Photoncounting; Analog to digital convertoer; Dead-time correction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Schatzel, K., 1986. Dead time correction of photon correlation functions, Applied Physics B, 41: 95-102.
2 Noh, Y.M., D. Muller, D.H. Shin, H. Lee, J.S. Jung, K.H. Lee, M. Cribb, Z. Li, and Y.J. Kim, 2009. Optical and microphysical properties of severe haze and smoke aerosol measured by integrated remote sensing techniques in Gwangju, Korea, Atmospheric Environment, 43: 879-888.   DOI   ScienceOn
3 Sharma, A., V. Sivakumar, C. Bollig, C. Van der Westhuizen, and D. Moema, 2009. System description of the mobile LIDAR of the CSIR, South Africa. South African Journal of Science, 105: 456-462.
4 Sharma, A., and J. Walker, 1992. Paralyzable and nonparalyzable deadtime analysis in spatial photon counting, Review of Scientific Instruments, 63: 5784-5793.   DOI
5 Susan, S., 2007. Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC, Cambridge University Press.
6 Whiteman, D., S. Melfi, and R. Ferrare, 1992. Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere, Applied Optics, 31: 3068-3082.   DOI   ScienceOn
7 Whiteman, D.N., 2003. Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations, Applied Optics, 42: 2571-2592.   DOI
8 Shin, D.H., Y.M. Noh, K.H. Lee, E.S. Jang, S.K. Shin, and Y.J. Kim, 2013. Development of stratospheric Lidar for observation of volcano aerosols, Korean Journal of Remote Sensing, 29(5): 581-588 (In Korean with English abstract).   과학기술학회마을   DOI   ScienceOn
9 Ansmann, A., M. Riebesell, and C. Weitkamp, 1990. Measurement of atmospheric aerosol extinction profiles with a Raman lidar. Optics Letters, 15: 746-748.   DOI
10 Althausen, D., R. Engelmann, H. Baars, B. Heese, A. Ansmann, D. Muller, and M. Komppula, 2009. Portable Raman lidar PollyXT for automated profiling of aerosol backscatter, extinction, and depolarization, Journal of Atmospheric and Oceanic Technology, 26: 2366-2378.   DOI   ScienceOn
11 Althausen, D., D. Muller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Z?rner, 2000. Scanning 6-wavelength 11-channel aerosol lidar, Journal of Atmospheric and Oceanic Technology, 17: 1469-1482.   DOI
12 Ansmann, A., M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michaelis, 1992. Combined Raman elasticbackscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio, Applied Physics B, 55: 18-28.   DOI
13 Donovan, D., J. Whiteway, and A.I. Carswell, 1993. Correction for nonlinear photon-counting effects in lidar systems. Applied optics, 32: 6742-6753.   DOI
14 Muller, D., A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, 2007a. Aerosol-type-dependent lidar ratios observed with Raman lidar, Journal of Geophysical Research: Atmospheres (1984-2012), 112(D16).
15 Muller, D., I. Mattis, A. Ansmann, U. Wandinger, C. Ritter, and D. Kaiser, 2007b. Multiwavelength Raman lidar observations of particle growth during long-range transport of forest-fire smoke in the free troposphere, Geophysical Research Letters, 34: L05803.
16 Mitev, V., R. Matthey, J.P. do Carmo, and G. Ulbrich, 2005. Signal-to-noise ratio of pseudo-random noise continuous wave backscatter lidar with analog detection, Proc. of SPIE 5984, Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing, 598404 (October 31, 2005); doi:10.1117/12.627638.   DOI
17 Murayama, T., D. Muller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, 2004. Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003, Geophysical Research Letters, 31(23): DOI: 10.1029/2004GL021105.   DOI   ScienceOn
18 Ramanathan, V., and G. Carmichael, 2008. Global and regional climate changes due to black carbon, Nature Geoscience, 1: 221-227.   DOI   ScienceOn