• 제목/요약/키워드: digital integrated circuits

검색결과 93건 처리시간 0.017초

생산자동화 시스템에서 실시간 물체인식을 위한 디지털 뉴런프로세서의 설계 및 구현 (Design and Implementation of the Digital Neuron Processor for the real time object recognition in the making Automatic system)

  • 홍봉화;주해종
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권3호
    • /
    • pp.37-50
    • /
    • 2007
  • 본 논문에서는 캐리전파가 없어 고속연산이 가능한 잉여 수 체계(Residue Number System)를 이용하여 생산자동화 시스템에서 실시간 물체인식을 위한 고속의 디지털 뉴런 프로세서를 제안하고 이를 구현하기 위한 중요연산부인 PE를 설계 및 구현하였다. 설계된 디지털 뉴런프로세서는 잉여수계를 이용한 MAC(Multiplier and Accumulator)연산기와 혼합계수 변환을 이용한 시그모이드 함수 연산부로 구성된다. 설계된 회로는 C언어 및 VHDL로 기술하였고 Compass툴로 합성하였으며 LG $0.8{\mu}m$ CMOS공정으로 설계되었다. 실험결과 본 논문에서 설계 및 구현한 디지털 뉴런프로세서는 기존 방식의 잉여수계를 이용한 연산기 및 실수연산기로 구현한 뉴런프로세서에 비하여 3배 이상의 연산속도와 약 50%정도 하드웨어 크기를 줄일 수 있었다. 본 논문에서 설계 및 구현한 디지털 뉴런프로세서는 실시간 처리를 요하는 생산자동화 시스템의 물체인식 시스템에 적용될 수 있을 것으로 기대된다.

  • PDF

학습효율 향상을 위한 웹기반 하이브리드 공학실험시스템 구현 (Implementation of a Web-based Hybrid Engineering Experiment System for Enhancing Learning Efficiency)

  • 김동식;최관순;이순흠
    • 공학교육연구
    • /
    • 제10권3호
    • /
    • pp.79-92
    • /
    • 2007
  • 본 연구에서는 학습과정에 우수성, 유효성, 그리고 경제적인 효율성을 향상시키기 위해 웹기반 가상실험실과 웹기반 원격실험실을 적절하게 통합한 하이브리드 공학실험시스템을 개발하였다. 먼저 클라이언트/서버 분산환경을 설계하여 디지털 시스템과 전기전자회로 실험에 대한 웹기반 가상실험시스템을 개발하였다. 제안된 가상실험시스템은 개념학습세션, 가상실험세션, 평가세션등의 3개의 주요한 세션과 이들 주요세션을 유기적으로 통합하여 학습효율의 극대화를 달성하기 위한 관리시스템으로 구성되어 있다. 다음으로 본 연구에서는 가상실험세션 동안에 발생할 수 있는 현실감의 부족을 해결하기 위해 전기/전자회로를 실험할 수 있는 웹기반 원격 실험실을 구현하였다. 더욱이 간결하고 사용자가 친근하게 접근할 수 있는 설계기법을 사용하였기 때문에 많은 사용자들이 쉽게 원격실험실에 접속할 수 있으며, 고가의 실험장비가 실제 실험실에 구비되어 있지 않더라도 자기주도의 심화학습이 가능하다. 제안된 가상/원격실험시스템은 독립적으로 사용될 수도 있으나 학습효율을 향상시키기 위해서 웹상에서 두 개의 시스템을 통합하여 하이브리드 공학실험시스템을 개발하였다. 제안된 하이브리드 공학실험시스템은 학습자들에게 상호작용적인 학습환경을 제공하여 공학실험교육을 효율적으로 관리하는 새로운 접근방식이다.

Hardware Approach to Fuzzy Inference―ASIC and RISC―

  • Watanabe, Hiroyuki
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.975-976
    • /
    • 1993
  • This talk presents the overview of the author's research and development activities on fuzzy inference hardware. We involved it with two distinct approaches. The first approach is to use application specific integrated circuits (ASIC) technology. The fuzzy inference method is directly implemented in silicon. The second approach, which is in its preliminary stage, is to use more conventional microprocessor architecture. Here, we use a quantitative technique used by designer of reduced instruction set computer (RISC) to modify an architecture of a microprocessor. In the ASIC approach, we implemented the most widely used fuzzy inference mechanism directly on silicon. The mechanism is beaded on a max-min compositional rule of inference, and Mandami's method of fuzzy implication. The two VLSI fuzzy inference chips are designed, fabricated, and fully tested. Both used a full-custom CMOS technology. The second and more claborate chip was designed at the University of North Carolina(U C) in cooperation with MCNC. Both VLSI chips had muliple datapaths for rule digital fuzzy inference chips had multiple datapaths for rule evaluation, and they executed multiple fuzzy if-then rules in parallel. The AT & T chip is the first digital fuzzy inference chip in the world. It ran with a 20 MHz clock cycle and achieved an approximately 80.000 Fuzzy Logical inferences Per Second (FLIPS). It stored and executed 16 fuzzy if-then rules. Since it was designed as a proof of concept prototype chip, it had minimal amount of peripheral logic for system integration. UNC/MCNC chip consists of 688,131 transistors of which 476,160 are used for RAM memory. It ran with a 10 MHz clock cycle. The chip has a 3-staged pipeline and initiates a computation of new inference every 64 cycle. This chip achieved an approximately 160,000 FLIPS. The new architecture have the following important improvements from the AT & T chip: Programmable rule set memory (RAM). On-chip fuzzification operation by a table lookup method. On-chip defuzzification operation by a centroid method. Reconfigurable architecture for processing two rule formats. RAM/datapath redundancy for higher yield It can store and execute 51 if-then rule of the following format: IF A and B and C and D Then Do E, and Then Do F. With this format, the chip takes four inputs and produces two outputs. By software reconfiguration, it can store and execute 102 if-then rules of the following simpler format using the same datapath: IF A and B Then Do E. With this format the chip takes two inputs and produces one outputs. We have built two VME-bus board systems based on this chip for Oak Ridge National Laboratory (ORNL). The board is now installed in a robot at ORNL. Researchers uses this board for experiment in autonomous robot navigation. The Fuzzy Logic system board places the Fuzzy chip into a VMEbus environment. High level C language functions hide the operational details of the board from the applications programme . The programmer treats rule memories and fuzzification function memories as local structures passed as parameters to the C functions. ASIC fuzzy inference hardware is extremely fast, but they are limited in generality. Many aspects of the design are limited or fixed. We have proposed to designing a are limited or fixed. We have proposed to designing a fuzzy information processor as an application specific processor using a quantitative approach. The quantitative approach was developed by RISC designers. In effect, we are interested in evaluating the effectiveness of a specialized RISC processor for fuzzy information processing. As the first step, we measured the possible speed-up of a fuzzy inference program based on if-then rules by an introduction of specialized instructions, i.e., min and max instructions. The minimum and maximum operations are heavily used in fuzzy logic applications as fuzzy intersection and union. We performed measurements using a MIPS R3000 as a base micropro essor. The initial result is encouraging. We can achieve as high as a 2.5 increase in inference speed if the R3000 had min and max instructions. Also, they are useful for speeding up other fuzzy operations such as bounded product and bounded sum. The embedded processor's main task is to control some device or process. It usually runs a single or a embedded processer to create an embedded processor for fuzzy control is very effective. Table I shows the measured speed of the inference by a MIPS R3000 microprocessor, a fictitious MIPS R3000 microprocessor with min and max instructions, and a UNC/MCNC ASIC fuzzy inference chip. The software that used on microprocessors is a simulator of the ASIC chip. The first row is the computation time in seconds of 6000 inferences using 51 rules where each fuzzy set is represented by an array of 64 elements. The second row is the time required to perform a single inference. The last row is the fuzzy logical inferences per second (FLIPS) measured for ach device. There is a large gap in run time between the ASIC and software approaches even if we resort to a specialized fuzzy microprocessor. As for design time and cost, these two approaches represent two extremes. An ASIC approach is extremely expensive. It is, therefore, an important research topic to design a specialized computing architecture for fuzzy applications that falls between these two extremes both in run time and design time/cost. TABLEI INFERENCE TIME BY 51 RULES {{{{Time }}{{MIPS R3000 }}{{ASIC }}{{Regular }}{{With min/mix }}{{6000 inference 1 inference FLIPS }}{{125s 20.8ms 48 }}{{49s 8.2ms 122 }}{{0.0038s 6.4㎲ 156,250 }} }}

  • PDF