• Title/Summary/Keyword: digital image analysis

Search Result 1,493, Processing Time 0.044 seconds

Statistical Analysis of 3D Volume of Red Blood Cells with Different Shapes via Digital Holographic Microscopy

  • Yi, Faliu;Lee, Chung-Ghiu;Moon, In-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.115-120
    • /
    • 2012
  • In this paper, we present a method to automatically quantify the three-dimensional (3D) volume of red blood cells (RBCs) using off-axis digital holographic microscopy. The RBCs digital holograms are recorded via a CCD camera using an off-axis interferometry setup. The RBCs' phase image is reconstructed from the recorded off-axis digital hologram by a computational reconstruction algorithm. The watershed segmentation algorithm is applied to the reconstructed phase image to remove background parts and obtain clear targets in the phase image with many single RBCs. After segmenting the reconstructed RBCs' phase image, all single RBCs are extracted, and the 3D volume of each single RBC is then measured with the surface area and the phase values of the corresponding RBC. In order to demonstrate the feasibility of the proposed method to automatically calculate the 3D volume of RBC, two typical shapes of RBCs, i.e., stomatocyte/discocyte, are tested via experiments. Statistical distributions of 3D volume for each class of RBC are generated by using our algorithm. Statistical hypothesis testing is conducted to investigate the difference between the statistical distributions for the two typical shapes of RBCs. Our experimental results illustrate that our study opens the possibility of automated quantitative analysis of 3D volume in various types of RBCs.

Digital Image Simulation of Electro-Optical Camera(EOC) on KOMPSAT-1

  • Shim, Hyung-Sik;Yong, Sang-Soo;Heo, Haeng-Pal;Lee, Seung-Hoon;Oh, Kyoung-Hwan;Paik, Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.349-354
    • /
    • 1999
  • Electro-Optical Camera (EOC) is the main payload of the KOMPSAT-1 satellite to perform the mission of cartography that builds up a digital map of Korean territory including a digital terrain elevation map. This paper discusses the issues of the digital image simulation of EOC for the generation of EOC simulated scene as taken by EOC at 685km altitude on orbit. For the purpose, simulation work has been performed with the sensor models of EOC and the satellite platform motions models through image chain analysis from the illumination source (Sun) to a simulated image output in digital number. MODTRAN fur radiance calculation, MTF models of optics, detector and motions of EOC for system point spread function (PSF), and signal chain equations for digital number output are described. Several noise models of EOC are also considered. The final output is the EOC simulated image in digital number. The simulation technique can be used in several phase of a spaceborne electro-optical system development project, feasibility study phase, design, manufacturing, test phases, ground image processing phases, and so on.

  • PDF

Digital Image Comparisons for Investigating Aging Effects and Artificial Modifications Using Image Analysis Software

  • Yoo, Yeongsik;Yoo, Woo Sik
    • Journal of Conservation Science
    • /
    • v.37 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • In the digital era, large archives of information and Internet accessibility make information search, including image search, easier and affordable, even from remote locations. Information transmission and sharing can be performed instantly, at any moment. In the case of images, there are risks of transmitting and recklessly sharing intentionally modified images. Such modified images can also be transmitted and used as an additional source of information by followers. In this study, historical portraits of Yu Kil-Chun are shown, who was the first Korean student to study in both Japan and the United States. He was an intellectual, writer, politician, and independence activist of Korea's late Joseon Dynasty. Using image processing software, the portrait images were compared to investigate aging effects and artificial modifications. Statistics of red (R), green (G), blue (B), and L*, a*, and b* values of every pixel in the selected identical areas of the portraits were compared to identify possible causes of variations, including aging effects and artificial modifications. Sepia toning, used in black and white photographs until the 1930s, and modern digital sepia toning can be very confusing owing to their aging effects. The importance of preservation of physical copies and preservation of context (interconnections between data and between documents) is discussed from archiving and conservation science perspectives.

Study on the Improvement of Indirect Intra-Oral Dental Digital X-ray Image Sensor with Optical Coupling

  • Whang, Joo-Ho;Chung, Jin-Bum;Kim, Tae-Woo
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.514-525
    • /
    • 2001
  • Optimum characteristics of digital X-ray sensor components were analyzed to develop intra- oral dental digital X-ray image sensor using indirect method. Parametric analysis was carried out to optimize the phosphor thickness and the fiber optic plate (FOP) coupling to charge coupled device (CCD). X-ray absorption and light diffusion in the phosphor layer were analyzed by the Monte Carlo method. Real time X-ray image was obtained with prototype X- ray image sensor using general CCD camera with 1∼10 Ip/mm resolution. It has been previously shown that large resolution degradation in X-ray images was caused by miss alignment of FOP to CCD and optical adhesive selection. In this study, we reported that X-ray image quality was greatly improved by using optimized characteristics of alignment device and phosphor thickness.

  • PDF

Correlation analysis between rotation parameters and attitude parameters in simulated satellite image

  • Yun, Young-Bo;Park, Jeong-Ho;Yoon, Geun-Won;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.553-558
    • /
    • 2002
  • Physical sensor model in pushbroom satellite images can be made from sensor modeling by rotation parameters and attitude parameters on the satellite track. These parameters are determined by the information obtained from GPS, INS, or star tracker. Provided from satellite image, an auxiliary data error is connected directly with an error of rotation parameters and attitude parameters. This paper analyzed how obtaining satellite images influenced errors of rotation parameters and attitude parameters. furthermore, for detailed analysis, this paper generated simulated satellite image, which was changed variously by rotation parameters and attitude parameters of satellite sensor model. Simulated satellite image is generated by using high-resolution digital aerial image and DEM (Digital Elevation Model) data. Moreover, this paper determined correlation of rotation parameter and attitude parameters through error analysis of simulated satellite image that was generated by various rotation parameters and attitude parameters.

  • PDF

The Deflection Measurement of Objects by the CCD Image Acquisition System (CCD 영상획득 시스템에 의한 피사체의 변위 측정)

  • 강준묵;배연성;주영은;엄대용
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • These days, the quantitative analysis of digital image by on-line image analysis system is being progressed actively, so the application of digital image is being groped in the safe test of construction. In this study, the synchronized 3D image acquisition and the system for processing that were established for analyzing the deflection of construction by using the acquired image from CCD camera. The reliability and the possibility of this established system are presented by deriving the accuracy of image analysis and the deflection of object through concrete loading test.

  • PDF

A Research on the Measurement of Human Factor Algorithm 3D Object (3차원 영상 객체 휴먼팩터 알고리즘 측정에 관한 연구)

  • Choi, Byungkwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.2
    • /
    • pp.35-47
    • /
    • 2018
  • The 4th industrial revolution, digital image technology has developed beyond the limit of multimedia industry to advanced IT fusion and composite industry. Particularly, application technology related to HCI element algorithm in 3D image object recognition field is actively developed. 3D image object recognition technology evolved into intelligent image sensing and recognition technology through 3D modeling. In particular, image recognition technology has been actively studied in image processing using object recognition recognition processing, face recognition, object recognition, and 3D object recognition. In this paper, we propose a research method of human factor 3D image recognition technology applying human factor algorithm for 3D object recognition. 1. Methods of 3D object recognition using 3D modeling, image system analysis, design and human cognitive technology analysis 2. We propose a 3D object recognition parameter estimation method using FACS algorithm and optimal object recognition measurement method. In this paper, we propose a method to effectively evaluate psychological research techniques using 3D image objects. We studied the 3D 3D recognition and applied the result to the object recognition element to extract and study the characteristic points of the recognition technology.

Multimodal Digital Photographic Imaging System for Total Diagnostic Analysis of Skin Lesions: DermaVision-Pro (다모드 디지털 사진 영상 시스템을 이용한 피부 손상의 진단적 분석에 대한 연구 : DermaVision-Pro)

  • Bae, Young-Woo;Kim, Eun-Ji;Jung, Byung-Jo
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.153-154
    • /
    • 2008
  • Digital photographic analysis is currently considered as a routine procedure in clinic because periodic follow-up examinations can provide meaningful information for diagnosis. However, it is impractical to separately evaluate all suspicious lesions with conventional digital photographic systems, which have inconsistent characteristics of the environmental conditions. To address the issue, it is necessary for total diagnostic evaluation in clinic to integrate conventional systems. Previously, a multimodal digital photographic imaging system, which provides a conventional color image, parallel and cross polarization color images and a fluorescent color image, was developed for objective evaluation of facial skin lesions. Based on our previous study, we introduce a commercial product, "DermaVision-PRO," for routine use in clinical application in dermatology. We characterize the system and describe the image analysis methods for objective evaluation of skin lesions. In order to demonstrate the validity of the system in dermatology, sample images were obtained from subjects with various skin disorders, and image analysis methods were applied for objective evaluation of those lesions.

  • PDF

Ground Deformation Evaluation during Vertical Shaft Construction through Digital Image Analysis

  • Woo, Sang-Kyun;Woo, Sang Inn;Kim, Joonyoung;Chu, Inyeop
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.285-293
    • /
    • 2021
  • The construction of underground structures such as power supply lines, communication lines, utility tunnels has significantly increased worldwide for improving urban aesthetics ensuring citizen safety, and efficient use of underground space. Those underground structures are usually constructed along with vertical cylindrical shafts to facilitate their construction and maintenance. When constructing a vertical shaft through the open-cut method, the walls are mostly designed to be flexible, allowing a certain level of displacement. The earth pressure applied to the flexible walls acts as an external force and its accurate estimation is essential for reasonable and economical structure design. The earth pressure applied to the flexible wall is closely interrelated to the displacement of the surrounding ground. This study simulated stepwise excavation for constructing a cylindrical vertical shaft through a centrifugal model experiment. One quadrant of the axisymmetric vertical shaft and the ground were modeled, and ground excavation was simulated by shrinking the vertical shaft. The deformation occurring on the entire ground during the excavation was continuously evaluated through digital image analysis. The digital image analysis evaluated complex ground deformation which varied with wall displacement, distance from the wall, and ground depth. When the ground deformation data accumulate through the method used in this study, they can be used for developing shaft wall models in future for analyzing the earth pressure acting on them.

The Digital Image Acquisition of High-resolution by Enhancing the Multiple Images (다중영상 강화에 의한 고해상도 수치영상획득)

  • 강준묵;오원진;엄대용
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.2
    • /
    • pp.167-176
    • /
    • 1999
  • The study about quantitative or qualitative analysis of object using digital image is being progressed actively with the development of the image medium and image process technique. But, it is very high that the dependency about image acquisition system of high resolution for image analysis of high accuracy and it is a equipment of high-price. In this study, I extracted the optimum condition of image enhancement by analyzing and enhancing the multiple images which were acquired by system of low-price. And I carried out the analysis of 3D accuracy by being applied the optimum condition of image enhancement. In the result of analysis of average 3D positioning error using law image and enhanced image which is acquired by applying the optimum condition of image enhancement, I could obtain the progressed accuracy about 10% on the enhanced image.

  • PDF