• Title/Summary/Keyword: digital fabrication

Search Result 363, Processing Time 0.214 seconds

Microstereolithography using a digital micromirror device as a dynamic pattern generator (디지털마이크로미러 소자를 이용한 마이크로광조형 기술개발)

  • Joo J.Y.;Kim S.H.;Jeong S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.509-513
    • /
    • 2005
  • In order to increase productivity in conventional stereolithography. Microstereolithography using a digital micramirror device $(DMD^{TM})$ as a dynamic patter generator is proposed The deviation from a level of clear optical images to a level of a photopolymer surface is a key for the fabrication of an accurate 3D structure. so this deviation is minimized by controlling the viscosity of FA1260T with organic solvents. After finding the appropriate process valuables (exposure time of optical images. layer thickness of each layer). the feasibility of microstructures such as a microgear and a microsphere is then demonstrated. Microstereolithography wi th $DMD^{TM}$ might eventually replace conventional laser induced microstereolithography market such as in the manufacturing of jewels and medical parts.

  • PDF

Fabrication of a High-Capacity Outdoor Mobile Robot Platform (고중량 적재 가능한 실외용 모바일 로봇 플랫폼 제작)

  • Min Wook Lee;Jihyeon Han;Taesu Yim;Hyun Min Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.884-885
    • /
    • 2023
  • 모바일 로봇은 제조, 물류, 건설 등 다양한 산업 분야에서 중요한 역할로 사용되고 있으며 연구분야에 있어서도 데이터 수집, 실험 수행, 환경 탐사, 자율주행 알고리즘 개발 등에도 사용되고 있다. 본 연구에서는 실외 환경에서 고중량 적재물을 이동시킬 수 있는 모바일 로봇 플랫폼을 설계하고 제작하였다. 또한 설계 정보와 제작 과정 등을 여러 사람들이 활용 가능하도록 공유한다. 개발된 모바일 로봇 플랫폼은 대부분의 부품들이 시중에서 쉽게 구할 수 있는 규격 부품을 사용하였기 때문에 공유된 설계 정보를 이용하여 많은 연구자들이 모바일 로봇 플랫폼을 제작하여 활용할 수 있도록 하는데 목적이 있다.

Hands-On Experience-Based Comprehensive Curriculum for Microelectronics Manufacturing Engineering Education

  • Ha, Taemin;Hong, Sang Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.280-288
    • /
    • 2016
  • Microelectronic product consumers may already be expecting another paradigm shift with smarter phones over smart phones, but the current status of microelectronic manufacturing engineering education (MMEE) in universities hardly makes up the pace for such a fast moving technology paradigm shift. The purpose of MMEE is to educate four-year university graduates to work in the microelectronics industry with up-to-date knowledge and self-motivation. In this paper, we present a comprehensive curriculum for a four-year university degree program in the area of microelectronics manufacturing. Three hands-on experienced-based courses are proposed, along with a methodology for undergraduate students to acquire hands-on experience, towards integrated circuits (ICs) design, fabrication and packaging, are presented in consideration of manufacturing engineering education. Semiconductor device and circuit design course for junior level is designed to cover how designed circuits progress to micro-fabrication by practicing full customization of the layout of digital circuits. Hands-on experienced-based semiconductor fabrication courses are composed to enhance students’ motivation to participate in self-motivated semiconductor fab activities by performing a series of collaborations. Finally, the Microelectronics Packaging course provides greater possibilities of mastered skillsets in the area of microelectronics manufacturing with the fabrication of printed circuit boards (PCBs) and board level assembly for microprocessor applications. The evaluation of the presented comprehensive curriculum was performed with a students’ survey. All the students responded with “Strongly Agree” or “Agree” for the manufacturing related courses. Through the development and application of the presented curriculum for the past six years, we are convinced that students’ confidence in obtaining their desired jobs or choosing higher degrees in the area of microelectronics manufacturing was increased. We confirmed that the hypothesis on the inclusion of handson experience-based courses for MMEE is beneficial to enhancing the motivation for learning.

Process Conditions for the Fabrication of Hydrophobic Surfaces with Different Photo-curable Resins (광경화성 레진의 성분 변화에 대한 소수성 표면 제작을 위한 공정 조건)

  • Hong, Sung-Ho;Woo, Heung-Sik
    • Tribology and Lubricants
    • /
    • v.36 no.5
    • /
    • pp.267-273
    • /
    • 2020
  • This study experimentally investigates hydrophobic surfaces fabricated via additive manufacturing. Additive manufacturing, commonly known as 3D printing, is the process of joining materials to fabricate parts from 3D model data, usually in a layer-upon-layer manner. Digital light processing is used to fabricate hydrophobic surfaces in this study. This method uses photo-curable resins and ultraviolet (UV) sources. Moreover, this technique generally has faster shaping speeds and is advantageous for the fabrication of small components because it enables the fabrication of one layer at a time. Two photo-curable resins with different compositions are used to fabricate micro-patterns of hydrophobic surfaces. The resins are composed of a photo-initiator, monomer, and oligomer. Experiments are conducted to determine suitable process conditions for the fabrication of hydrophobic surfaces depending on the type of resin. The most important factors affecting the process conditions are the UV exposure time and slice thickness. The fabrication capability according to the process conditions is evaluated using the side and top views of the micro-patterns observed using a microscope. The micro-patterns are collapsed and intertwined when the exposure time is short because sufficient light (heat) is not applied to cure the photo-curable resin with a given slice thickness. On the other hand, the micro-patterns are attached to each other when the exposure time is prolonged because the over-curing time can cure the periphery of a given shape. When the slice is thicker, the additional curing area is enlarged in each slice owing to the straightness of UV light, and the slice surface becomes rough.

A Study on the Extended Fair Use of Copyrighted Digital Contents (디지털 콘텐츠 저작물의 공정이용 확대에 대한 연구)

  • Kim, Seong-Mook
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.217-222
    • /
    • 2020
  • The concept and discussion of copyright should reflect changes in using environments of digital properties and developments of technology. Further discussions are required about protection, transfer and usage of copyright for user created contents or digital activities. Digital archives should clarify the ranges of permitted usage or guides to quotation. One should not be biased toward regulating digital copying, but consider the value of diverse transformation of digital properties. This will trigger tension between private and public usage, or sharing of digital fabrications, which leads to the necessity of discussions on policy level. The interpretation of copyright is limited to protecting the copyright owner's right, but it should be suggested to widen the range to permitting fair use. The extended fair use of digital contents and by clarifying specific rules will activate creation and distribution of digital contents and contribute to more productive usage of innovation.

'All-on-4' fixed implant supported prosthesis restoration using digital workflow: a case report (Digital workflow를 활용한 'All-on-4' 임플란트 지지 고정성 보철물 수복 증례)

  • Sungwoo Ju;Seoung-Jin Hong;Janghyun Paek;Kwantae Noh;Ahran Pae;Kung-Rock Kwon;Hyeong-Seob Kim
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.4
    • /
    • pp.316-327
    • /
    • 2023
  • In the case of fully edentulous patients with severe alveolar bone resorption, the consideration of 'All-on-X' implant-supported fixed prosthesis after placing four or more implants in the anterior maxilla is possible. Recent advancements in digital dentistry have enabled systematic and predictable treatment in all phases, including diagnosis, surgery, and prosthesis fabrication. By incorporating digital dentistry techniques such as digital complete denture, implant surgical guides, facial scanning into the conventional restoration process, it is possible to reduce the complexity of the prosthesis fabrication and effectively achieve the transition from provisional prosthesis to definitive prosthesis in terms of both aesthetics and function.

A Design of a Diredt Digital Frequency Syntheszer with an Array Type CORDIC Pipeline (파이프라인형 CORDIC를 이용한 직접 디지털 주파수 합성기 설계)

  • 남현숙;김대용;유영갑
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.36-43
    • /
    • 1999
  • A new design of a Direct Digital Frequency Synthesizer(DDFS) is presented, where a pipelined Coordinate Rotate Digital Computer(CORDIC) circuit is employed to calculate amplitude values of all the phase angles of sinusoidal waveforms produced. a near-optimal number of pipeline stages is determined based on an error analysis of calculated amplitude values in terms of the number of bits. The DDFS was implemented using a field programmable gate array, yielding a stable operating frequency of 11.75MHz. The measurement results show higher resolution, faster operating speed and simpler fabrication process, compared to ROM-based counterparts. The CORDIC-based DDFS yields 5 times higher resolution than conventional ROM-based versions.

  • PDF

Optical Design and Fabrication of a Large Telephoto Zoom Lens with Fixed f/2.8 and Light Autofocus Lens

  • Ryu, Jae Myung;Gang, Geon Mo;Lee, Hyuck Ki;Lee, Ki Woo;Heu, Min;Jo, Jae Heung
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.629-637
    • /
    • 2015
  • Compact system cameras (CSCs) are commonly used nowadays and feature enhanced video functions and thin yet light interchangeable lenses. They differ from digital single-lens reflex (DSLR) cameras in their lack of mirror boxes. CSCs, however, have autofocus (AF) speeds lower than those of conventional DSLRs, requiring weight reduction of their AF groups. To ensure the marketability of large telephoto zoom lenses with fixed f/2.8 regardless of field angle variation, in particular, light weight AF groups are essential. In this paper, we introduce a paraxial optical design method and present a new, large, telephoto zoom lens with f/2.8 regardless of the field angle variation, plus a lightweight AF group consisting of only one lens. Using the basic paraxial optical design and optimization methods, we fabricated a new and lighter zoom lens system, including a single-lens, lightweight AF group with almost the same performance.

Design and Fabrication of Wideband DFD Phase Correlator for 6.0~18.0 GHz Frequency (6.0~18.0 GHz 주파수용 광대역 DFD 위상 상관기 설계 및 제작)

  • Choi, Won;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.341-346
    • /
    • 2014
  • This paper has presented the design and fabrication of phase correlator for wideband digital frequency discriminator (DFD) operating over the 6.0 to 18.0 GHz frequency range. Fabricated DFD phase correlator has been measured I or Q output signal, and analyzed frequency discrimination error. The operation of the proposed mixer type correlator has been analyzed by deriving some analytic equations. To design the phase correlator, this paper has modeled and simulated IQ mixer and 8-way power divider by using RF simulation tool. Designed phase correlator has fabricated and measured. The phase error and frequency discrimination error have been presented using by measured I and Q output signal. Over the 6.0~18.0 GHz range, the root mean square(RMS) phase error is $4.81^{\circ}$, RMS and frequency discrimination error is 1.49 MHz, RMS.

Digital approach for fabrication of zirconia restoration with optimal gingival adaptation after tooth extraction: A case report (발치 후 지르코니아 보철물 제작에서 최적의 연조직 적합 형성을 위한 디지털 치료 증례)

  • Mai, Hang Nga;Lee, Du-Hyeong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.3
    • /
    • pp.217-220
    • /
    • 2020
  • Conventionally, when a zirconia fixed dental restoration is planned, the interim restoration is made manually and the final restoration is fabricated by the silicone impression taking at the prosthodontic stage. This conventional workflow does not provide direct relation between interim and final restorations. Moreover, the predictability of the final restoration could be low. Nowadays, the CAD/CAM based restoration fabrication and related digital techniques are developed and being applied in dentistry in multiple ways. This case report introduces a digital workflow for fabricating an optimal gingival adaptation and predictability of monolithic zirconia restoration by using CAD/CAM interim restoration, intra oral scan, and image superimposition technique in a case that required tooth extraction.