• Title/Summary/Keyword: digital elevation models

Search Result 149, Processing Time 0.027 seconds

Characteristics of Remote Sensors on KOMPSAT-I (다목적 실용위성 1호 탑재 센서의 특성)

  • 조영민;백홍렬
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.1
    • /
    • pp.1-16
    • /
    • 1996
  • Korea Aerospace Research Institute(KARI) is developing a Korea Multi-Purpose Satellite I(KOMPSAT-I) which accommodates Electro-Optical Camera(EOC), Ocean Color Imager(OCI), Space Physics Sensor(SPS) for cartography, ocean color monitoring, and space environment monitoring respectively. The satellite has the weight of about 500 kg and is operated on the sun synchronized orbit with the altitude of 685km, the orbit period of 98 minutes, and the orbit revisit time of 28days. The satellite will be launched in the third quarter of 1999 and its lifetime is more than 3 years. EOC has cartography mission to provide images for the production of scale maps, including digital elevation models, of Korea from a remote earth view in the KOMPSAT orbit. EOC collects panchromatic imagery with the ground sample distance(GSD) of 6.6m and the swath width of 15km at nadir through the visible spectral band of 510-730 nm. EOC scans the ground track of 800km per orbit by push-broom and body pointed method. OCI mission is worldwide ocean color monitoring for the study of biological oceanography. OCI is a multispectral imager generating 6 color ocean images with and <1km GSD by whisk-broom scanning method. OCI is designed to provide on-orbit spectral band selectability in the spectral range from 400nm to 900nm. The color images are collected through 6 primary spectral bands centered at 443, 490, 510, 555, 670, 865nm or 6 spectral bands selected in the spectral range via ground commands after launch. SPS consists of High Energy Particle Detector(HEPD) and Ionosphere Measurement Sensor(IMS). HEPD has mission to characterize the low altitude high energy particle environment and to study the effects of radiation environment on microelectronics. IMS measures densities and temperature of electrons in the ionosphere and monitors the ionospheric irregularities in KOMPSAT orbit.

The Development of VR based Application for Realistic Disaster Prevention Training (현실감 있는 재난재해 예방 교육을 위한 VR 기반 앱 개발)

  • Kim, Taehoon;Youn, Junhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.287-293
    • /
    • 2018
  • The Korean peninsula has been known as an area that is free of volcanic disasters. However, recent observations and research results of volcanoes in Far East Asia, including Baedu Mountain and Japanese volcanoes, show that the Korean peninsula is no longer a safe area from volcanic disasters. Since 2012, the Korean government has been developing an IT-based construction technology, VDRS (Volcanic Disaster Response System), for effective volcanic disaster response system. The main users of VDRS are public officers in central or local governments. However, most of them have little experience and knowledge about volcanic disasters. Therefore, it is essential to develop education contents and implement training on volcanic disaster response for effective response in a real disaster situation. In this paper, we deal with the development of a mobile application based on virtual reality (VR) for realistic volcanic disaster response training. The objectives of training are the delivery of knowledge and experience for volcanic disasters. First, VR contents were generated based on spatial information. A 3D model was constructed based on a Digital Elevation Model (DEM), and visualization models for meterological effects and various volcanic disaster diffusion effects were implemented for the VR contents. Second, the mobile application for the volcanic disaster response training was implemented. A 12-step story board is proposed for volcanic disaster experience. The application was developed with the Unity3D engine based on the proposed story board to deliver knowledge of various volcanic disasters (volcanic ash, pyroclastic flows, volcanic mudflow etc.). The results of this paper will be used for volcanic disaster response and prevention training and for more realistic training linked with augmented reality technology in the future.

Kinematic Interpretation for the Development of the Yeonghae Basin, Located at the Northeastern Part of the Yangsan Fault, Korea

  • Altaher, Zooelnon Abdelwahed;Park, Kiwoong;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.467-482
    • /
    • 2022
  • The Yeonghae basin is located at the northeastern part of the Yangsan fault (YSF; a potentially active fault). The study of the architecture of the Yeonghae basin is important to understand the activity of the Yangsan fault system (YSFS) as well as the basin formation mechanism and the activity of the YSFS. For this study, Digital Elevation Model (DEM) was used to highlight the marginal faults, and structural fieldwork was performed to understand the geometry of the intra-basinal structures and the nature of the bounding faults. DEM analysis reveals that the eastern margin is bounded by the northern extension of the YSF whereas the western margin is bounded by two curvilinear sub-parallel faults; Baekseokri fault (BSF) and Gakri fault (GF). The field data indicate that the YSF is striking in the N-S direction, steeply dipping to the east, and experienced both sinistral and dextral strike-slip movements. Both the BSF and GF are characterized dominantly by an oblique right-lateral strike-slip movement. The stress indicators show that the maximum horizontal compressional stress was in NNE to NE and NNW-SSE, which is consistent with right-lateral and left-lateral movements of the YSFS, respectively. The plotted structural data show that the NE-SW is the predominant direction of the structural elements. This indicates that the basin and marginal faults are mainly controlled by the right-lateral strike-slip movements of the YSFS. Based on the structural architecture of the Yeonghae basin, the study area represents a contractional zone rather than an extensional zone in the present time. We proposed two models to explain the opening and developing mechanism of the Yeonghae basin. The first model is that the basin developed as an extensional pull-apart basin during the left-lateral movement of the YSF, which has been reactivated by tectonic inversion. In the second model, the basin was developed as an extensional zone at a dilational quadrant of an old tip zone of the northern segment of the YSF during the right-lateral movement stage. Later on, the basin has undergone a shortening stage due to the closing of the East Sea. The second model is supported by the major trend of the collected structural data, indicating predominant right-lateral movement. This study enables us to classify the Yeonghae basin as an inverted strike-slip basin. Moreover, two opposite strike-slip movement senses along the eastern marginal fault indicate multiple deformation stages along the Yangsan fault system developed along the eastern margin of the Korean peninsula.

The Suitable Region and Site for 'Fuji' Apple Under the Projected Climate in South Korea (미래 시나리오 기후조건하에서의 사과 '후지' 품종 재배적지 탐색)

  • Kim, Soo-Ock;Chung, U-Ran;Kim, Seung-Heui;Choi, In-Myung;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.162-173
    • /
    • 2009
  • Information on the expected geographical shift of suitable zones for growing crops under future climate is a starting point of adaptation planning in agriculture and is attracting much concern from policy makers as well as researchers. Few practical schemes have been developed, however, because of the difficulty in implementing the site-selection concept at an analytical level. In this study, we suggest site-selection criteria for quality Fuji apple production and integrate geospatial data and information available in public domains (e.g., digital elevation model, digital soil maps, digital climate maps, and predictive models for agroclimate and fruit quality) to implement this concept on a GIS platform. Primary criterion for selecting sites suitable for Fuji apple production includes land cover, topography, and soil texture. When the primary criterion is satisfied, climatic conditions such as the length of frost free season, freezing risk during the overwintering period, and the late frost risk in spring are tested as the secondary criterion. Finally, the third criterion checks for fruit quality such as color and shape. Land attributes related to these factors in each criterion were implemented in ArcGIS environment as relevant raster layers for spatial analysis, and retrieval procedures were automated by writing programs compatible with ArcGIS. This scheme was applied to the A1B projected climates for South Korea in the future normal years (2011-2040, 2041-2070, and 2071-2100) as well as the current climate condition observed in 1971-2000 for selecting the sites suitable for quality Fuji apple production in each period. Results showed that this scheme can figure out the geographical shift of suitable zones at landscape scales as well as the latitudinal shift of northern limit for cultivation at national or regional scales.

Parameterization and Application of a Forest Landscape Model by Using National Forest Inventory and Long Term Ecological Research Data (국가산림자원조사와 장기생태연구 자료를 활용한 산림경관모형의 모수화 및 적용성 평가)

  • Cho, Wonhee;Lim, Wontaek;Kim, Eun-Sook;Lim, Jong-Hwan;Ko, Dongwook W.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.215-231
    • /
    • 2020
  • Forest landscape models (FLMs) can be used to investigate the complex interactions of various ecological processes and patterns, which makes them useful tools to evaluate how environmental and anthropogenic variables can influence forest ecosystems. However, due to the large spatio-temporal scales in FLMs studies, parameterization and validation can be extremely challenging when applying to new study areas. To address this issue, we focused on the parameterization and application of a spatially explicit forest landscape model, LANDIS-II, to Mt. Gyebang, South Korea, with the use of the National Forest Inventory (NFI) and long-term ecological research (LTER) site data. In this study, we present the followings for the biomass succession extension of LANDIS-II: 1) species-specific and spatial parameters estimation for the biomass succession extension of LANDIS-II, 2) calibration, and 3) application and validation for Mt. Gyebang. For the biomass succession extension, we selected 14 tree species, and parameterized ecoregion map, initial community map, species growth characteristics. We produced ecoregion map using elevation, aspect, and topographic wetness index based on digital elevation model. Initial community map was produced based on NFI and sub-alpine survey data. Tree species growth parameters, such as aboveground net primary production and maximum aboveground biomass, were estimated from PnET-II model based on species physiological factors and environmental variables. Literature data were used to estimate species physiological factors, such as FolN, SLWmax, HalfSat, growing temperature, and shade tolerance. For calibration and validation purposes, we compared species-specific aboveground biomass of model outputs and NFI and sub-alpine survey data and calculated coefficient of determination (R2) and root mean square error (RMSE). The final model performed very well, with 0. 98 R2 and 8. 9 RMSE. This study can serve as a foundation for the use of FLMs to other applications such as comparing alternative forest management scenarios and natural disturbance effects.

GIS-based Disaster Management System for a Private Insurance Company in Case of Typhoons(I) (지리정보기반의 재해 관리시스템 구축(I) -민간 보험사의 사례, 태풍의 경우-)

  • Chang Eun-Mi
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.1 s.112
    • /
    • pp.106-120
    • /
    • 2006
  • Natural or man-made disaster has been expected to be one of the potential themes that can integrate human geography and physical geography. Typhoons like Rusa and Maemi caused great loss to insurance companies as well as public sectors. We have implemented a natural disaster management system for a private insurance company to produce better estimation of hazards from high wind as well as calculate vulnerability of damage. Climatic gauge sites and addresses of contract's objects were geo-coded and the pressure values along all the typhoon tracks were vectorized into line objects. National GIS topog raphic maps with scale of 1: 5,000 were updated into base maps and digital elevation model with 30 meter space and land cover maps were used for reflecting roughness of land to wind velocity. All the data are converted to grid coverage with $1km{\times}1km$. Vulnerability curve of Munich Re was ad opted, and preprocessor and postprocessor of wind velocity model was implemented. Overlapping the location of contracts on the grid value coverage can show the relative risk, with given scenario. The wind velocities calculated by the model were compared with observed value (average $R^2=0.68$). The calibration of wind speed models was done by dropping two climatic gauge data, which enhanced $R^2$ values. The comparison of calculated loss with actual historical loss of the insurance company showed both underestimation and overestimation. This system enables the company to have quantitative data for optimizing the re-insurance ratio, to have a plan to allocate enterprise resources and to upgrade the international creditability of the company. A flood model, storm surge model and flash flood model are being added, at last, combined disaster vulnerability will be calculated for a total disaster management system.

A Quantification Method for the Cold Pool Effect on Nocturnal Temperature in a Closed Catchment (폐쇄집수역의 냉기호 모의를 통한 일 최저기온 분포 추정)

  • Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.4
    • /
    • pp.176-184
    • /
    • 2011
  • Cold air on sloping surfaces flows down to the valley bottom in mountainous terrain at calm and clear nights. Based on the assumption that the cold air flow may be the same as the water flow, current models estimate temperature drop by regarding the cold air accumulation at a given location as the water-like free drainage. At a closed catchment whose outlet is blocked by man-made obstacles such as banks and roads, however, the water-like free drainage assumption is no longer valid because the cold air accumulates from the bottom first. We developed an empirical model to estimate quantitatively the effect of cold pool on nocturnal temperature in a closed catchment. In our model, a closed catchment is treated like a "vessel", and a digital elevation model (DEM) was used to calculate the maximum capacity of the cold pool formed in a closed catchment. We introduce a topographical variable named "shape factor", which is the ratio of the cold air accumulation potential across the whole catchment area to the maximum capacity of the cold pool to describe the relative size of temperature drop at a wider range of catchment shapes. The shape factor is then used to simulate the density profile of cold pool formed in a given catchment based on a hypsometric equation. The cold lake module was incorporated with the existing model (i.e., Chung et al., 2006), generating a new model and predicting distribution of minimum temperature over closed catchments. We applied this model to Akyang valley (i.e., a typical closed catchment of 53 $km^2$ area) in the southern skirt of Mt. Jiri National Park where 12 automated weather stations (AWS) are operational. The performance of the model was evaluated based on the feasibility of delineating the temperature pattern accurately at cold pool forming at night. Overall, the model's ability of simulating the spatial pattern of lower temperature were improved especially at the valley bottom, showing a similar pattern of the estimated temperature with that of thermal images obtained across the valley at dawn (0520 to 0600 local standard time) of 17 May 2011. Error in temperature estimation, calculated with the root mean square error using the 10 low-lying AWSs, was substantially decreased from $1.30^{\circ}C$ with the existing model to $0.71^{\circ}C$ with the new model. These results suggest the feasibility of the new method in predicting the site-specific freeze and frost warning at a closed catchment.

Selecting Suitable Riparian Wildlife Passage Locations for Water Deer based on MaxEnt Model and Wildlife Crossing Analysis (MaxEnt 모형과 고라니의 이동행태를 고려한 수변지역 이동통로 적지선정)

  • Jeong, Seung Gyu;Lee, Hwa Su;Park, Jong Hoon;Lee, Dong Kun;Park, Chong Hwa;Seo, Chang Wan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.101-111
    • /
    • 2015
  • Stream restoration projects have become threats to riparian ecosystem in Rep. of korea. Riparian wildlife becomes isolated and the animals are often experience difficulties in crossing riparian corridors. The purposes of this study is to select suitable wildlife passages for wild animals crossing riparian corridors. Maximum entropy model and snow tracking data on embankment in winter seasons were used to develop species distribution models to select suitable wildlife passages for water deer. The analysis suggests the following. Firstly, most significant factors for water deer's habitat in area nearby riparian area are shown to distance to water, age-class, land cover, slope, aspect, digital elevation model, tree density, and distance to road. For the riparian area, significant factors are shown to be land cover, size of riparian area, distance to tributary, and distance to built-up. Secondly, the suitable wildlife passages are recommended to reflect areas of high suitability with Maximum Entropy model in riparian areas and the surrounding areas and moving passages. The selected suitable areas are shown to be areas with low connectivity due to roads and vertical levee although typical habitats for water deer are forest, grassland, and farmland. In addition, the analysis of traces on snow suggests that the water deer make a detour around the artificial structures. In addition, the water deer are shown to make a detour around the fences of roads and embankment around farmland. Lastly, the water deer prefer habitats around riparian areas following tributaries. The method used in this study is expected to provide cost-efficient and functional analysis in selecting suitable areas.

Groundwater Recharge Evaluation on Yangok-ri Area of Hongseong Using a Distributed Hydrologic Model (VELAS) (분포형 수문모형(VELAS)을 이용한 홍성 양곡리 일대 지하수 함양량 평가)

  • Ha, Kyoochul;Park, Changhui;Kim, Sunghyun;Shin, Esther;Lee, Eunhee
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.161-176
    • /
    • 2021
  • In this study, one of the distributed hydrologic models, VELAS, was used to analyze the variation of hydrologic elements based on water balance analysis to evaluate the groundwater recharge in more detail than the annual time scale for the past and future. The study area is located in Yanggok-ri, Seobu-myeon, Hongseong-gun, Chungnam-do, which is very vulnerable to drought. To implement the VELAS model, spatial characteristic data such as digital elevation model (DEM), vegetation, and slope were established, and GIS data were constructed through spatial interpolation on the daily air temperature, precipitation, average wind speed, and relative humidity of the Korea Meteorological Stations. The results of the analysis showed that annual precipitation was 799.1-1750.8 mm, average 1210.7 mm, groundwater recharge of 28.8-492.9 mm, and average 196.9 mm over the past 18 years from 2001 to 2018 in the study area. Annual groundwater recharge rate compared to annual precipitation was from 3.6 to 28.2% with a very large variation and average 14.9%. By the climate change RCP 8.5 scenario, the annual precipitation from 2019 to 2100 was 572.8-1996.5 mm (average 1078.4 mm) and groundwater recharge of 26.7-432.5 mm (average precipitation 16.2%). The annual groundwater recharge rates in the future were projected from 2.8% to 45.1%, 18.2% on average. The components that make up the water balance were well correlated with precipitation, especially in the annual data rather than the daily data. However, the amount of evapotranspiration seems to be more affected by other climatic factors such as temperature. Groundwater recharge in more detailed time scale rather than annual scale is expected to provide basic data that can be used for groundwater development and management if precipitation are severely varied by time, such as droughts or floods.